1887

Abstract

NusG, a well-conserved protein in all the three forms of life, is involved in transcription elongation and termination, as well as in the process of transcription–translation coupling. The existence of species-specific functional, as well as conformational, divergences in NusG makes it an attractive transcription factor to study, especially if it originates from a pathogen. Here, we report functional and conformational characterizations of the (Mtb) protein Rv0639 that has been annotated as a homologue of NusG. Rv0639 failed to complement the functions of NusG (Ec NusG) and did not exhibit any signature of a transcription elongation–termination factor. However, it retained the ability to bind to its cognate ribosomal protein S10 (Rv0700). Compared with Ec NusG, Rv0639 possesses unique conformational features characterized by altered secondary structures in the C-terminal domain (CTD), an unusually long and disordered linker region between the N-terminal domain (NTD) and CTD, and a folding of its NTD over its CTD. This unusual folded conformation could have imparted specialized functions to this protein, required to adapt the physiology of Mtb We speculate that in the absence of a bona fide RfaH, a NusG paralogue that is involved in pathogenicity in , Rv0639 functions as an RfaH-like factor and is involved in pathogenicity using unidentified -like sequences in the Mtb genome. And hence, we reannotate Rv0639 as a paralogue of NusG, instead of a homologue.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083709-0
2015-01-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/67.html?itemId=/content/journal/micro/10.1099/mic.0.083709-0&mimeType=html&fmt=ahah

References

  1. Artsimovitch I., Landick R.. 2000; Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci U S A97:7090–7095 [CrossRef][PubMed]
    [Google Scholar]
  2. Belogurov G. A., Mooney R. A., Svetlov V., Landick R., Artsimovitch I.. 2009; Functional specialization of transcription elongation factors. EMBO J28:112–122 [CrossRef][PubMed]
    [Google Scholar]
  3. Burmann B. M., Schweimer K., Luo X., Wahl M. C., Stitt B. L., Gottesman M. E., Rösch P.. 2010; A NusE:NusG complex links transcription and translation. Science328:501–504 [CrossRef][PubMed]
    [Google Scholar]
  4. Burmann B. M., Knauer S. H., Sevostyanova A., Schweimer K., Mooney R. A., Landick R., Artsimovitch I., Rösch P.. 2012; An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor. Cell150:291–303 [CrossRef][PubMed]
    [Google Scholar]
  5. Burns C. M., Richardson L. V., Richardson J. P.. 1998; Combinatorial effects of NusA and NusG on transcription elongation and Rho-dependent termination in Escherichia coli. J Mol Biol278:307–316 [CrossRef][PubMed]
    [Google Scholar]
  6. Cardinale C. J., Washburn R. S., Tadigotla V. R., Brown L. M., Gottesman M. E., Nudler E.. 2008; Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Science320:935–938 [CrossRef][PubMed]
    [Google Scholar]
  7. Chalissery J., Banerjee S., Bandey I., Sen R.. 2007; Transcription termination defective mutants of Rho: role of different functions of Rho in releasing RNA from the elongation complex. J Mol Biol371:855–872 [CrossRef][PubMed]
    [Google Scholar]
  8. Chalissery J., Muteeb G., Kalarickal N. C., Mohan S., Jisha V., Sen R.. 2011; Interaction surface of the transcription terminator Rho required to form a complex with the C-terminal domain of the antiterminator NusG. J Mol Biol405:49–64 [CrossRef][PubMed]
    [Google Scholar]
  9. Czyz A., Mooney R. A., Iaconi A., Landick R.. 2014; Mycobacterial RNA polymerase requires a U-tract at intrinsic terminators and is aided by NusG at suboptimal terminators. MBio5:e00931 [CrossRef][PubMed]
    [Google Scholar]
  10. Drögemüller J., Stegmann C. M., Mandal A., Steiner T., Burmann B. M., Gottesman M. E., Wöhrl B. M., Rösch P., Wahl M. C., Schweimer K.. 2013; An autoinhibited state in the structure of Thermotoga maritima NusG. Structure21:365–375 [CrossRef][PubMed]
    [Google Scholar]
  11. Gopal B., Papavinasasundaram K. G., Dodson G., Colston M. J., Major S. A., Lane A. N.. 2001; Spectroscopic and thermodynamic characterization of the transcription antitermination factor NusE and its interaction with NusB from Mycobacterium tuberculosis. Biochemistry40:920–928 [CrossRef][PubMed]
    [Google Scholar]
  12. Kalarickal N. C., Ranjan A., Kalyani B. S., Wal M., Sen R.. 2010; A bacterial transcription terminator with inefficient molecular motor action but with a robust transcription termination function. J Mol Biol395:966–982 [CrossRef][PubMed]
    [Google Scholar]
  13. Kyrpides N. C., Woese C. R., Ouzounis C. A.. 1996; KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. Trends Biochem Sci21:425–426 [CrossRef][PubMed]
    [Google Scholar]
  14. Li J., Mason S. W., Greenblatt J.. 1993; Elongation factor NusG interacts with termination factor Rho to regulate termination and antitermination of transcription. Genes Dev7:161–172 [CrossRef][PubMed]
    [Google Scholar]
  15. Merino E., Jensen R. A., Yanofsky C.. 2008; Evolution of bacterial trp operons and their regulation. Curr Opin Microbiol11:78–86 [CrossRef][PubMed]
    [Google Scholar]
  16. Mooney R. A., Schweimer K., Rösch P., Gottesman M., Landick R.. 2009; Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J Mol Biol391:341–358 [CrossRef][PubMed]
    [Google Scholar]
  17. Pani B., Banerjee S., Chalissery J., Muralimohan A., Loganathan R. M., Suganthan R. B., Sen R.. 2006; Mechanism of inhibition of Rho-dependent transcription termination by bacteriophage P4 protein Psu. J Biol Chem281:26491–26500 [CrossRef][PubMed]
    [Google Scholar]
  18. Pani B., Ranjan A., Sen R.. 2009; Interaction surface of bacteriophage P4 protein Psu required for complex formation with the transcription terminator Rho. J Mol Biol389:647–660 [CrossRef][PubMed]
    [Google Scholar]
  19. Sevostyanova A., Artsimovitch I.. 2010; Functional analysis of Thermus thermophilus transcription factor NusG. Nucleic Acids Res38:7432–7445 [CrossRef][PubMed]
    [Google Scholar]
  20. Sevostyanova A., Belogurov G. A., Mooney R. A., Landick R., Artsimovitch I.. 2011; The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol Cell43:253–262 [CrossRef][PubMed]
    [Google Scholar]
  21. Shashni R., Qayyum M. Z., Vishalini V., Dey D., Sen R.. 2014; Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho. Nucleic Acids Res42:9677–9690 [CrossRef][PubMed]
    [Google Scholar]
  22. Squires C. L., Greenblatt J., Li J., Condon C., Squires C. L.. 1993; Ribosomal RNA antitermination in vitro: requirement for Nus factors and one or more unidentified cellular components. Proc Natl Acad Sci U S A90:970–974 [CrossRef][PubMed]
    [Google Scholar]
  23. Tomar S. K., Artsimovitch I.. 2013; NusG-Spt5 proteins - universal tools for transcription modification and communication. Chem Rev113:8604–8619 [CrossRef][PubMed]
    [Google Scholar]
  24. Weisberg R. A., Gottesman M. E.. 1999; Processive antitermination. J Bacteriol181:359–367[PubMed]
    [Google Scholar]
  25. Weixlbaumer A., Leon K., Landick R., Darst S. A.. 2013; Structural basis of transcriptional pausing in bacteria. Cell152:431–441 [CrossRef][PubMed]
    [Google Scholar]
  26. Yakhnin A. V., Babitzke P.. 2014; NusG/Spt5: are there common functions of this ubiquitous transcription elongation factor?. Curr Opin Microbiol18:68–71 [CrossRef][PubMed]
    [Google Scholar]
  27. Yakhnin A. V., Yakhnin H., Babitzke P.. 2008; Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader. Proc Natl Acad Sci U S A105:16131–16136 [CrossRef][PubMed]
    [Google Scholar]
  28. Yang J. T., Wu C. S., Martinez H. M.. 1986; Calculation of protein conformation from circular dichroism. Methods Enzymol130:208–269 [CrossRef][PubMed]
    [Google Scholar]
  29. Zellars M., Squires C. L.. 1999; Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG. Mol Microbiol32:1296–1304 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083709-0
Loading
/content/journal/micro/10.1099/mic.0.083709-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error