1887

Abstract

The twin-arginine translocase (Tat) complex is a unique system that translocates folded proteins across the cytoplasmic membrane. In this study, the Tat transporter system in was characterized to determine the role of Tat in the iron uptake pathway. A putative operon, containing conserved Fur-binding sequences in the promoter region, has been predicted to encode Tat-translocase components. Another operon, , with a putative Fur-binding sequence in the promoter, close to TatAC, was identified in the complementary strands of . Electrophoretic mobility shift assay showed that the listerial Fur-repressor binds to the promoter of the operon, suggesting that is under Fur regulation. Using a heterologous system in a reporter assay, FepB was translocated across the membrane. Mutations in and were constructed to determine the roles of Tat and FepB, respectively. In a whole-cell ferric reductase assay, the and mutants were found to have reduced levels of ferric reductase activities compared with those of the isogenic parent strain. Although ferric reductase activity has been demonstrated in , a conventional ferric reductase encoding sequence does not appear to be present in its genome. Hence, we propose that encodes a ferric reductase enzyme, which is translocated by the Tat-translocase system onto the bacterial cell surface, and plays an important role in the reductive iron uptake process in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083642-0
2015-02-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/264.html?itemId=/content/journal/micro/10.1099/mic.0.083642-0&mimeType=html&fmt=ahah

References

  1. Adams T. J., Vartivarian S., Cowart R. E.. 1990; Iron acquisition systems of Listeria monocytogenes. Infect Immun58:2715–2718[PubMed]
    [Google Scholar]
  2. Alami M., Lüke I., Deitermann S., Eisner G., Koch H. G., Brunner J., Müller M.. 2003; Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell12:937–946 [CrossRef][PubMed]
    [Google Scholar]
  3. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F.. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev27:215–237 [CrossRef][PubMed]
    [Google Scholar]
  4. Bagg A., Neilands J. B.. 1987; Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry26:5471–5477 [CrossRef][PubMed]
    [Google Scholar]
  5. Baichoo N., Helmann J. D.. 2002; Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol184:5826–5832 [CrossRef][PubMed]
    [Google Scholar]
  6. Barker A. P., Vasil A. I., Filloux A., Ball G., Wilderman P. J., Vasil M. L.. 2004; A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol Microbiol53:1089–1098 [CrossRef][PubMed]
    [Google Scholar]
  7. Berks B. C., Palmer T., Sargent F.. 2003; The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol47:187–254 [CrossRef][PubMed]
    [Google Scholar]
  8. Biswas L., Biswas R., Nerz C., Ohlsen K., Schlag M., Schäfer T., Lamkemeyer T., Ziebandt A. K., Hantke K..& other authors ( 2009; Role of the twin-arginine translocation pathway in Staphylococcus. J Bacteriol191:5921–5929 [CrossRef][PubMed]
    [Google Scholar]
  9. Brown J. S., Holden D. W.. 2002; Iron acquisition by Gram-positive bacterial pathogens. Microbes Infect4:1149–1156 [CrossRef][PubMed]
    [Google Scholar]
  10. Camejo A., Buchrieser C., Couvé E., Carvalho F., Reis O., Ferreira P., Sousa S., Cossart P., Cabanes D.. 2009; In vivo transcriptional profiling of Listeria monocytogenes and mutagenesis identify new virulence factors involved in infection. PLoS Pathog5:e1000449 [CrossRef][PubMed]
    [Google Scholar]
  11. Cao J., Woodhall M. R., Alvarez J., Cartron M. L., Andrews S. C.. 2007; EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-regulated, low-pH Fe2+ transporter that is cryptic in Escherichia coli K-12 but functional in E. coli O157:H7. Mol Microbiol65:857–875 [CrossRef][PubMed]
    [Google Scholar]
  12. Chakraborty T., Leimeister-Wächter M., Domann E., Hartl M., Goebel W., Nichterlein T., Notermans S.. 1992; Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol174:568–574[PubMed]
    [Google Scholar]
  13. Charpentier E., Courvalin P.. 1999; Antibiotic resistance in Listeria spp.. Antimicrob Agents Chemother43:2103–2108[PubMed]
    [Google Scholar]
  14. Conte M. P., Longhi C., Polidoro M., Petrone G., Buonfiglio V., Di Santo S., Papi E., Seganti L., Visca P., Valenti P.. 1996; Iron availability affects entry of Listeria monocytogenes into the enterocytelike cell line Caco-2. Infect Immun64:3925–3929[PubMed]
    [Google Scholar]
  15. Cowart R. E.. 2002; Reduction of iron by extracellular iron reductases: implications for microbial iron acquisition. Arch Biochem Biophys400:273–281 [CrossRef][PubMed]
    [Google Scholar]
  16. Deneer H. G., Healey V., Boychuk I.. 1995; Reduction of exogenous ferric iron by a surface-associated ferric reductase of Listeria spp.. Microbiology141:1985–1992 [CrossRef][PubMed]
    [Google Scholar]
  17. Desvaux M., Hébraud M.. 2006; The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev30:774–805 [CrossRef][PubMed]
    [Google Scholar]
  18. Dilks K., Giménez M. I., Pohlschröder M.. 2005; Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea. J Bacteriol187:8104–8113 [CrossRef][PubMed]
    [Google Scholar]
  19. Fallah A. A., Saei-Dehkordi S. S., Rahnama M., Tahmasby H., Mahzounieh M.. 2012; Prevalence and antimicrobial resistance patterns of Listeria species isolated from poultry products marketed in Iran. Food Control28:327–332 [CrossRef]
    [Google Scholar]
  20. Faraldo-Gómez J. D., Smith G. R., Sansom M. S.. 2003; Molecular dynamics simulations of the bacterial outer membrane protein FhuA: a comparative study of the ferrichrome-free and bound states. Biophys J85:1406–1420 [CrossRef][PubMed]
    [Google Scholar]
  21. Freitag N. E., Port G. C., Miner M. D.. 2009; Listeria monocytogenes - from saprophyte to intracellular pathogen. Nat Rev Microbiol7:623–628 [CrossRef][PubMed]
    [Google Scholar]
  22. Hantke K.. 2001; Iron and metal regulation in bacteria. Curr Opin Microbiol4:172–177 [CrossRef][PubMed]
    [Google Scholar]
  23. Hartford T., O’Brien S., Andrew P. W., Jones D., Roberts I. S.. 1993; Utilization of transferrin-bound iron by Listeria monocytogenes. FEMS Microbiol Lett108:311–318 [CrossRef][PubMed]
    [Google Scholar]
  24. Jin B., Newton S. M., Shao Y., Jiang X., Charbit A., Klebba P. E.. 2006; Iron acquisition systems for ferric hydroxamates, haemin and haemoglobin in Listeria monocytogenes. Mol Microbiol59:1185–1198 [CrossRef][PubMed]
    [Google Scholar]
  25. Jongbloed J. D., Antelmann H., Hecker M., Nijland R., Bron S., Airaksinen U., Pries F., Quax W. J., van Dijl J. M., Braun P. G.. 2002; Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis. J Biol Chem277:44068–44078 [CrossRef][PubMed]
    [Google Scholar]
  26. Jongbloed J. D., Grieger U., Antelmann H., Hecker M., Nijland R., Bron S., van Dijl J. M.. 2004; Two minimal Tat translocases in Bacillus. Mol Microbiol54:1319–1325 [CrossRef][PubMed]
    [Google Scholar]
  27. Kuhn M., Goebel W.. 1999; Pathogenesis of Listeria monocytogenes. In Listeria, Listeriosis, and Food Safety pp.97–130 Edited by Ryser E. T., Marth E. H.. New York: Marcel Dekker;
    [Google Scholar]
  28. Ledala N., Pearson S. L., Wilkinson B. J., Jayaswal R. K.. 2007; Molecular characterization of the Fur protein of Listeria monocytogenes. Microbiology153:1103–1111 [CrossRef][PubMed]
    [Google Scholar]
  29. Ledala N., Sengupta M., Muthaiyan A., Wilkinson B. J., Jayaswal R. K.. 2010; Transcriptomic response of Listeria monocytogenes to iron limitation and Fur mutation. Appl Environ Microbiol76:406–416 [CrossRef][PubMed]
    [Google Scholar]
  30. Lee J. W., Helmann J. D.. 2006; The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature440:363–367 [CrossRef][PubMed]
    [Google Scholar]
  31. Lee P. A., Tullman-Ercek D., Georgiou G.. 2006; The bacterial twin-arginine translocation pathway. Annu Rev Microbiol60:373–395 [CrossRef][PubMed]
    [Google Scholar]
  32. Lee V. T., Schneewind O.. 2001; Protein secretion and the pathogenesis of bacterial infections. Genes Dev15:1725–1752 [CrossRef][PubMed]
    [Google Scholar]
  33. Li H., Jacques P. E., Ghinet M. G., Brzezinski R., Morosoli R.. 2005; Determining the functionality of putative Tat-dependent signal peptides in Streptomyces coelicolor A3(2) by using two different reporter proteins. Microbiology151:2189–2198 [CrossRef][PubMed]
    [Google Scholar]
  34. Liu X., Du Q., Wang Z., Zhu D., Huang Y., Li N., Wei T., Xu S., Gu L.. 2011; Crystal structure and biochemical features of EfeB/YcdB from Escherichia coli O157: ASP235 plays divergent roles in different enzyme-catalyzed processes. J Biol Chem286:14922–14931 [CrossRef][PubMed]
    [Google Scholar]
  35. McDonough J. A., Hacker K. E., Flores A. R., Pavelka M. S. Jr, Braunstein M.. 2005; The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial β-lactamases. J Bacteriol187:7667–7679 [CrossRef][PubMed]
    [Google Scholar]
  36. McGann P., Ivanek R., Wiedmann M., Boor K. J.. 2007; Temperature-dependent expression of Listeria monocytogenes internalin and internalin-like genes suggests functional diversity of these proteins among the listeriae. Appl Environ Microbiol73:2806–2814 [CrossRef][PubMed]
    [Google Scholar]
  37. McLaughlin H. P., Hill C., Gahan C. G.. 2011; The impact of iron on Listeria monocytogenes; inside and outside the host. Curr Opin Biotechnol22:194–199 [CrossRef][PubMed]
    [Google Scholar]
  38. McLaughlin H. P., Xiao Q., Rea R. B., Pi H., Casey P. G., Darby T., Charbit A., Sleator R. D., Joyce S. A..& other authors ( 2012; A putative P-type ATPase required for virulence and resistance to haem toxicity in Listeria monocytogenes. PLoS ONE7:e30928 [CrossRef][PubMed]
    [Google Scholar]
  39. Ochsner U. A., Snyder A., Vasil A. I., Vasil M. L.. 2002; Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc Natl Acad Sci U S A99:8312–8317 [CrossRef][PubMed]
    [Google Scholar]
  40. Olsen K. N., Larsen M. H., Gahan C. G., Kallipolitis B., Wolf X. A., Rea R., Hill C., Ingmer H.. 2005; The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. Microbiology151:925–933 [CrossRef][PubMed]
    [Google Scholar]
  41. Park S. F., Stewart G. S.. 1990; High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene94:129–132 [CrossRef][PubMed]
    [Google Scholar]
  42. Polidoro M., De Biase D., Montagnini B., Guarrera L., Cavallo S., Valenti P., Stefanini S., Chiancone E.. 2002; The expression of the dodecameric ferritin in Listeria spp. is induced by iron limitation and stationary growth phase. Gene296:121–128 [CrossRef][PubMed]
    [Google Scholar]
  43. Posey J. E., Shinnick T. M., Quinn F. D.. 2006; Characterization of the twin-arginine translocase secretion system of Mycobacterium smegmatis. J Bacteriol188:1332–1340 [CrossRef][PubMed]
    [Google Scholar]
  44. Rose R. W., Brüser T., Kissinger J. C., Pohlschröder M.. 2002; Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol45:943–950 [CrossRef][PubMed]
    [Google Scholar]
  45. Sakaridis I., Soultos N., Iossifidou E., Papa A., Ambrosiadis I., Koidis P.. 2011; Prevalence and antimicrobial resistance of Listeria monocytogenes isolated in chicken slaughterhouses in Northern Greece. J Food Prot74:1017–1021 [CrossRef][PubMed]
    [Google Scholar]
  46. Schlech W. F. III. 2000; Foodborne listeriosis. Clin Infect Dis31:770–775 [CrossRef][PubMed]
    [Google Scholar]
  47. Shen A., Higgins D. E.. 2006; The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. PLoS Pathog2:e30 [CrossRef][PubMed]
    [Google Scholar]
  48. Singh V. K., Xiong A., Usgaard T. R., Chakrabarti S., Deora R., Misra T. K., Jayaswal R. K.. 1999; ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus. Mol Microbiol33:200–207 [CrossRef][PubMed]
    [Google Scholar]
  49. van der Ploeg R., Barnett J. P., Vasisht N., Goosens V. J., Pöther D. C., Robinson C., van Dijl J. M.. 2011; Salt sensitivity of minimal twin arginine translocases. J Biol Chem286:43759–43770 [CrossRef][PubMed]
    [Google Scholar]
  50. Voulhoux R., Filloux A., Schalk I. J.. 2006; Pyoverdine-mediated iron uptake in Pseudomonas aeruginosa: the Tat system is required for PvdN but not for FpvA transport. J Bacteriol188:3317–3323 [CrossRef][PubMed]
    [Google Scholar]
  51. Walsh D., Duffy G., Sheridan J. J., Blair I. S., McDowell D. A.. 2001; Antibiotic resistance among Listeria, including Listeria monocytogenes, in retail foods. J Appl Microbiol90:517–522 [CrossRef][PubMed]
    [Google Scholar]
  52. Weinberg E. D.. 2009; Iron availability and infection. Biochim Biophys Acta1790:600–605 [CrossRef][PubMed]
    [Google Scholar]
  53. Widdick D. A., Dilks K., Chandra G., Bottrill A., Naldrett M., Pohlschröder M., Palmer T.. 2006; The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor. Proc Natl Acad Sci U S A103:17927–17932 [CrossRef][PubMed]
    [Google Scholar]
  54. Widdick D. A., Eijlander R. T., van Dijl J. M., Kuipers O. P., Palmer T.. 2008; A facile reporter system for the experimental identification of twin-arginine translocation (Tat) signal peptides from all kingdoms of life. J Mol Biol375:595–603 [CrossRef][PubMed]
    [Google Scholar]
  55. Xiao Q., Jiang X., Moore K. J., Shao Y., Pi H., Dubail I., Charbit A., Newton S. M., Klebba P. E.. 2011; Sortase independent and dependent systems for acquisition of haem and haemoglobin in Listeria monocytogenes. Mol Microbiol80:1581–1597 [CrossRef][PubMed]
    [Google Scholar]
  56. Xiong A., Singh V. K., Cabrera G., Jayaswal R. K.. 2000; Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus. Microbiology146:659–668[PubMed]
    [Google Scholar]
  57. Yahr T. L., Wickner W. T.. 2001; Functional reconstitution of bacterial Tat translocation in vitro. EMBO J20:2472–2479 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083642-0
Loading
/content/journal/micro/10.1099/mic.0.083642-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error