1887

Abstract

Proteins secreted by FZB42, a root-associated plant growth-promoting rhizobacterium, are thought to play an important role in the establishment of beneficial interactions with plants. To investigate the possible role of proteins in this process, extracellular proteome maps of FZB42 during the late exponential and stationary growth phases were generated using 2D gel electrophoresis. Out of the 121 proteins identified by MALDI-TOF MS, 61 were predicted to contain secretion signals. A few of the others, bearing no signal peptide, have been described as elicitors of plant innate immunity, including flagellin proteins, cold-shock proteins and the elongation factor Tu, suggesting that FZB42 protects plants against disease by eliciting innate immunity. Our reference maps were used to monitor bacterial responses to maize root exudates. Approximately 34 proteins were differentially secreted in response to root exudates during either the late exponential or stationary phase. These were mainly involved in nutrient utilization and transport. The protein with the highest fold change in the presence of maize root exudates during the late exponential growth phase was acetolactate synthase (AlsS), an enzyme involved in the synthesis of the volatile acetoin, known as an inducer of systemic resistance against plant pathogens and as a trigger of plant growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083576-0
2015-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/131.html?itemId=/content/journal/micro/10.1099/mic.0.083576-0&mimeType=html&fmt=ahah

References

  1. Abramovitch R. B., Anderson J. C., Martin G. B. 2006; Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601–611 [View Article][PubMed]
    [Google Scholar]
  2. Akashi H., Gojobori T. 2002; Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis . Proc Natl Acad Sci U S A 99:3695–3700 [View Article][PubMed]
    [Google Scholar]
  3. Belitsky B. R., Sonenshein A. L. 1998; Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. J Bacteriol 180:6298–6305[PubMed]
    [Google Scholar]
  4. Benhamou N., Lafontaine P. J., Nicole M. 1994; Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology 84:1432–1444 [View Article]
    [Google Scholar]
  5. Borriss R. 2011; Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents. In Bacteria in Agrobiology: Plant Growth Responses pp. 41–76 Edited by Maheshwari D. K. Heidelberg: Springer; [View Article]
    [Google Scholar]
  6. Borriss R., Chen X. H., Rueckert C., Blom J., Becker A., Baumgarth B., Fan B., Pukall R., Schumann P. & other authors ( 2011; Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int J Syst Evol Microbiol 61:1786–1801 [View Article][PubMed]
    [Google Scholar]
  7. Calogero S., Gardan R., Glaser P., Schweizer J., Rapoport G., Debarbouille M. J. 1994; RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators. J Bacteriol 176:1234–1241[PubMed]
    [Google Scholar]
  8. Cao M., Kobel P. A., Morshedi M. M., Wu M. F. W., Paddon C., Helmann J. D. 2002; Defining the Bacillus subtilis σW regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J Mol Biol 316:443–457 [View Article][PubMed]
    [Google Scholar]
  9. Carvalhais L. C., Dennis P. G., Fedoseyenko D., Hajirezaei M. R., Borriss R., von Wiren R. 2011; Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11 [View Article]
    [Google Scholar]
  10. Carvalhais L. C., Dennis P. G., Fan B., Fedoseyenko D., Kierul K., Becker A., von Wiren N., Borriss R. 2013; Linking plant nutrional status to plant–microbe interactions. PLoS ONE 16:e68555 [View Article]
    [Google Scholar]
  11. Chambert R., Pereira Y., Petit-Glatron M. F. 2003; Purification and characterization of YfkN, a trifunctional nucleotide phosphoesterase secreted by Bacillus subtilis. . J Biochem 134:655–660 [View Article][PubMed]
    [Google Scholar]
  12. Chen X. H., Koumoutsi A., Scholz R., Eisenreich A., Schneider K., Heinemeyer I., Morgenstern B., Voss B., Hess W. R. & other authors ( 2007; Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014 [View Article][PubMed]
    [Google Scholar]
  13. Chen X. H., Koumoutsi A., Scholz R., Borriss R. 2009; More than anticipated – production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol 16:14–24 [View Article][PubMed]
    [Google Scholar]
  14. Chowdhury S. P., Dietel K., Rändler M., Schmid M., Junge H., Borriss R., Hartmann A., Grosch R. 2013; Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS ONE 8:e68818 [View Article][PubMed]
    [Google Scholar]
  15. Darvill A. G., Albersheim P. 1984; Phytoalexins and their elicitors – a defense against microbial infection in plants. Annu Rev Plant Physiol 35:243–275 [View Article]
    [Google Scholar]
  16. Doornbos R. F., van Loon L. C., Bakker P. A. 2012; Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32:227–243 [View Article]
    [Google Scholar]
  17. Ebel J., Scheel D. 1997; Signals in host–parasite interactions. In Plant Relationships: Part A The Mycota vol. 5 pp. 85–105 Edited by Carroll G., Tudzynski P. Berlin: Springer; [View Article]
    [Google Scholar]
  18. Eiamphungporn W., Helmann J. D. 2008; The Bacillus subtilis σM regulon and its contribution to cell envelope stress responses. Mol Microbiol 67:830–848 [View Article][PubMed]
    [Google Scholar]
  19. Fan B., Carvalhais L. C., Becker A., Fedoseyenko D., von Wirén N., Borriss R. 2012; Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol 12:116 [View Article][PubMed]
    [Google Scholar]
  20. Felix G., Boller T. 2003; Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. J Biol Chem 278:6201–6208 [View Article][PubMed]
    [Google Scholar]
  21. Felix G., Duran J. D., Volko S., Boller T. 1999; Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276 [View Article][PubMed]
    [Google Scholar]
  22. Görke B., Stülke J. 2008; Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624 [View Article][PubMed]
    [Google Scholar]
  23. Hahne H., Wolff S., Hecker M., Becher D. 2008; From complementarity to comprehensiveness – targeting the membrane proteome of growing Bacillus subtilis by divergent approaches. Proteomics 8:4123–4136 [View Article][PubMed]
    [Google Scholar]
  24. Hegde P. S., White I. R., Debouck C. 2003; Interplay of transcriptomics and proteomics. Curr Opin Biotechnol 14:647–651 [View Article][PubMed]
    [Google Scholar]
  25. Hiller K., Schobert M., Hundertmark C., Jahn D., Münch R. 2003; JVirGel: calculation of virtual two-dimensional protein gels. Nucleic Acids Res 31:3862–3865 [View Article][PubMed]
    [Google Scholar]
  26. Idriss E. E., Makarewicz O., Farouk A., Rosner K., Greiner R., Bochow H., Richter T., Borriss R. 2002; Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097–2109[PubMed]
    [Google Scholar]
  27. Inaoka T., Matsumura Y., Tsuchido T. 1999; SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtilis. J Bacteriol 181:1939–1943[PubMed]
    [Google Scholar]
  28. Jongbloed J. D., Antelmann H., Hecker M., Nijland R., Bron S., Airaksinen U., Pries F., Quax W. J., van Dijl J. M., Braun P. G. 2002; Selective contribution of the twin-arginine translocation pathway to protein secretion in Bacillus subtilis . J Biol Chem 277:44068–44078 [View Article][PubMed]
    [Google Scholar]
  29. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 [View Article][PubMed]
    [Google Scholar]
  30. Kunze G., Zipfel C., Robatzek S., Niehaus K., Boller T., Felix G. 2004; The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507 [View Article][PubMed]
    [Google Scholar]
  31. Lanoue A., Burlat V., Henkes G. J., Koch I., Schurr U., Röse U. S. R. 2010; De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588 [View Article][PubMed]
    [Google Scholar]
  32. Lazazzera B. A. 2001; The intracellular function of extracellular signaling peptides. Peptides 22:1519–1527 [View Article][PubMed]
    [Google Scholar]
  33. Lu J., Yang F., Li Y., Xia B., Jin C. W. 2008; 1H, 13C, and 15N resonance assignments of the reduced and oxidized forms of Bacillus subtilis thiol peroxidase. Biomol NMR Assign 2:183–186 [View Article][PubMed]
    [Google Scholar]
  34. Lugtenberg B., Kamilova F. 2009; Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556 [View Article][PubMed]
    [Google Scholar]
  35. Makarewicz O., Dubrac S., Msadek T., Borriss R. 2006; Dual role of the PhoP~P response regulator: Bacillus amyloliquefaciens FZB45 phytase gene transcription is directed by positive and negative interactions with the phyC promoter. J Bacteriol 188:6953–6965 [View Article][PubMed]
    [Google Scholar]
  36. Miethke M., Klotz O., Linne U., May J. J., Beckering C. L., Marahiel M. A. 2006; Ferri-bacillibactin uptake and hydrolysis in Bacillus subtilis . Mol Microbiol 61:1413–1427 [View Article][PubMed]
    [Google Scholar]
  37. Moses S., Sinner T., Zaprasis A., Stöveken N., Hoffmann T., Belitsky B. R., Sonenshein A. L., Bremer E. 2012; Proline utilization by Bacillus subtilis: uptake and catabolism. J Bacteriol 194:745–758 [View Article][PubMed]
    [Google Scholar]
  38. Mostertz J., Scharf C., Hecker M., Homuth G. 2004; Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150:497–512 [View Article][PubMed]
    [Google Scholar]
  39. Newman M. A., Sundelin T., Nielsen J. T., Erbs G. 2013; MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139 [View Article][PubMed]
    [Google Scholar]
  40. Nie L., Wu G., Culley D. E., Scholten J. C., Zhang W. 2007; Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol 27:63–75 [View Article][PubMed]
    [Google Scholar]
  41. Ogura M., Yamaguchi H., Yoshida Ki, Fujita Y., Tanaka T. 2001; DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B. subtilis two-component regulatory systems. Nucleic Acids Res 29:3804–3813 [View Article][PubMed]
    [Google Scholar]
  42. Ongena M., Jourdan E., Adam A., Paquot M., Brans A., Joris B., Arpigny J. L., Thonart P. 2007; Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090 [View Article][PubMed]
    [Google Scholar]
  43. Pieterse C. M., Zamioudis C., Berendsen R. L., Weller D. M., Van Wees S. C., Bakker P. A. 2014; Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375 [View Article][PubMed]
    [Google Scholar]
  44. Rahman A., Uddin W., Wenner N. G. 2014; Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. . Mol Plant Pathol doi:10.1111/mpp.12209 [Epub ahead of print] [View Article][PubMed]
    [Google Scholar]
  45. Raposo M. P., Inácio J. M., Mota L. J., de Sá-Nogueira I. 2004; Transcriptional regulation of genes encoding arabinan-degrading enzymes in Bacillus subtilis . J Bacteriol 186:1287–1296 [View Article][PubMed]
    [Google Scholar]
  46. Renna M. C., Najimudin N., Winik L. R., Zahler S. A. 1993; Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol 175:3863–3875[PubMed]
    [Google Scholar]
  47. Ryu C. M., Farag M. A., Hu C. H., Reddy M. S., Wei H. X., Paré P. W., Kloepper J. W. 2003; Bacterial volatiles promote growth in Arabidopsis . Proc Natl Acad Sci U S A 100:4927–4932 [View Article][PubMed]
    [Google Scholar]
  48. Ryu C. M., Farag M. A., Hu C. H., Reddy M. S., Kloepper J. W., Paré P. W. 2004; Bacterial volatiles induce systemic resistance in Arabidopsis . Plant Physiol 134:1017–1026 [View Article][PubMed]
    [Google Scholar]
  49. Sadaie Y., Nakadate H., Fukui R., Yee L. M., Asai K. 2008; Glucomannan utilization operon of Bacillus subtilis . FEMS Microbiol Lett 279:103–109 [View Article][PubMed]
    [Google Scholar]
  50. Sarosh B. R., Danielsson J., Meijer J. 2009; Transcript profiling of oilseed rape (Brassica napus) primed for biocontrol differentiate genes involved in microbial interactions with beneficial Bacillus amyloliquefaciens from pathogenic Botrytis cinerea . Plant Mol Biol 70:31–45 [View Article][PubMed]
    [Google Scholar]
  51. Scholz R., Molohon K. J., Nachtigall J., Vater J., Markley A. L., Süssmuth R. D., Mitchell D. A., Borriss R. 2011; Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol 193:215–224 [View Article][PubMed]
    [Google Scholar]
  52. Scholz R., Vater J., Budiharjo A., Wang Z., He Y., Dietel K., Schwecke T., Herfort S., Lasch P., Borriss R. 2014; Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol 196:1842–1852 [View Article][PubMed]
    [Google Scholar]
  53. Stenström C. M., Jin H., Major L. L., Tate W. P., Isaksson L. A. 2001; Codon bias at the 3′-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli . Gene 263:273–284 [View Article][PubMed]
    [Google Scholar]
  54. Tjalsma H., Bolhuis A., Jongbloed J. D. H., Bron S., van Dijl J. M. 2000; Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547 [View Article][PubMed]
    [Google Scholar]
  55. Tjalsma H., Antelmann H., Jongbloed J. D. H., Braun P. G., Darmon E., Dorenbos R., Dubois J. Y., Westers H., Zanen G. & other authors ( 2004; Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68:207–233 [View Article][PubMed]
    [Google Scholar]
  56. Tojo S., Kumamoto K., Hirooka K., Fujita Y. 2010; Heavy involvement of stringent transcription control depending on the adenine or guanine species of the transcription initiation site in glucose and pyruvate metabolism in Bacillus subtilis . J Bacteriol 192:1573–1585 [View Article][PubMed]
    [Google Scholar]
  57. Touati D. 2000; Iron and oxidative stress in bacteria. Arch Biochem Biophys 373:1–6 [View Article][PubMed]
    [Google Scholar]
  58. Vogel C., Marcotte E. M. 2012; Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232[PubMed]
    [Google Scholar]
  59. Voigt B., Schweder T., Sibbald M. J., Albrecht D., Ehrenreich A., Bernhardt J., Feesche J., Maurer K. H., Gottschalk G. & other authors ( 2006; The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics 6:268–281 [View Article][PubMed]
    [Google Scholar]
  60. Wang Y., Wang H., Yang C. H., Wang Q., Mei R. 2007; Two distinct manganese-containing superoxide dismutase genes in Bacillus cereus: their physiological characterizations and roles in surviving in wheat rhizosphere. FEMS Microbiol Lett 272:206–213 [View Article][PubMed]
    [Google Scholar]
  61. Yakushi T., Masuda K., Narita S., Matsuyama S., Tokuda H. 2000; A new ABC transporter mediating the detachment of lipid-modified proteins from membranes. Nat Cell Biol 2:212–218[PubMed] [CrossRef]
    [Google Scholar]
  62. Zawadzka A. M., Kim Y., Maltseva N., Nichiporuk R., Fan Y., Joachimiak A., Raymond K. N. 2009; Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc Natl Acad Sci U S A 106:21854–21859 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083576-0
Loading
/content/journal/micro/10.1099/mic.0.083576-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error