1887

Abstract

and synthesize C carotenoids via farnesyl pyrophosphate, forming apophytoene as the first committed step in the pathway. The products of the pathways were methyl 4′-[6--acyl-glycosyl)oxy]-4,4′-diapolycopen-4-oic acid and 4,4′-diapolycopen-4,4′-dioic acid with putative glycosyl esters. The genomes of both bacteria were sequenced, and the genes for their early terpenoid and specific carotenoid pathways annotated. All genes for a functional 1-deoxy--xylulose 5-phosphate synthase pathway were identified in both species, whereas genes of the mevalonate pathway were absent. The genes for specific carotenoid synthesis and conversion were found on gene clusters which were organized differently in the two species. The genes involved in the formation of the carotenoid cores were assigned by functional complementation in . This bacterium was co-transformed with a plasmid mediating the formation of the putative substrate and a second plasmid with the gene of interest. Carotenoid products in the transformants were determined by HPLC. Using this approach, we identified the genes for a 4,4′-diapophytoene synthase (), 4,4′-diapophytoene desaturase (), 4,4′-diapolycopene ketolase ( and 4,4′-diapolycopene aldehyde oxidase (). The three genes were closely related and belonged to the gene family with a similar reaction mechanism of their enzyme products. Additional genes encoding glycosyltransferases and acyltransferases for the modification of the carotenoid skeleton of the diapolycopenoic acids were identified by comparison with the corresponding genes from other bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083519-0
2015-01-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/194.html?itemId=/content/journal/micro/10.1099/mic.0.083519-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Balibar C. J., Shen X., Tao J.. ( 2009;). The mevalonate pathway of Staphylococcus aureus. . J Bacteriol 191:, 851–861. [CrossRef][PubMed]
    [Google Scholar]
  3. Borovkov A. Y., Rivkin M. I.. ( 1997;). XcmI-containing vector for direct cloning of PCR products. . Biotechniques 22:, 812–814.[PubMed]
    [Google Scholar]
  4. Breitenbach J., Gerjets T., Sandmann G.. ( 2013;). Catalytic properties and reaction mechanism of the CrtO carotenoid ketolase from the cyanobacterium Synechocystis sp. PCC 6803. . Arch Biochem Biophys 529:, 86–91. [CrossRef][PubMed]
    [Google Scholar]
  5. Britton G., Liaaen-Jensen S., Pfander H.. (editors) ( 2004;). Carotenoids Handbook. Basel:: Birkhäuser;. [CrossRef]
    [Google Scholar]
  6. Duc H., Fraser P. D., Tam N. K. M., Cutting S. M.. ( 2006;). Carotenoids present in halotolerant Bacillus spore formers. . FEMS Microbiol Lett 255:, 215–224. [CrossRef][PubMed]
    [Google Scholar]
  7. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Sym Ser 41:, 95–98.
    [Google Scholar]
  8. Hanna Z., Fregeau C., Préfontaine G., Brousseau R.. ( 1984;). Construction of a family of universal expression plasmid vectors. . Gene 30:, 247–250. [CrossRef][PubMed]
    [Google Scholar]
  9. Hosokawa M.. ( 2008;). Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. . Molecules 13:, 412–431. [CrossRef][PubMed]
    [Google Scholar]
  10. Khaneja R., Perez-Fons L., Fakhry S., Baccigalupi L., Steiger S., To E., Sandmann G., Dong T. C., Ricca E.. & other authors ( 2010;). Carotenoids found in Bacillus. . J Appl Microbiol 108:, 1889–1902.[PubMed]
    [Google Scholar]
  11. Kim S. H., Lee P. C.. ( 2012;). Functional expression and extension of staphylococcal staphyloxanthin biosynthetic pathway in Escherichia coli. . J Biol Chem 287:, 21575–21583. [CrossRef][PubMed]
    [Google Scholar]
  12. Kleinig H., Schmitt R., Meister W., Englert G., Thommen H.. ( 1979;). New C30-carotenoic acid glucosyl esters from Pseudomonas rhodos. . Z Naturforsch C 34c:, 181–185.
    [Google Scholar]
  13. Köcher S., Breitenbach J., Müller V., Sandmann G.. ( 2009;). Structure, function and biosynthesis of carotenoids in the moderately halophilic bacterium Halobacillus halophilus. . Arch Microbiol 191:, 95–104. [CrossRef][PubMed]
    [Google Scholar]
  14. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef][PubMed]
    [Google Scholar]
  15. Lairson L. L., Henrissat B., Davies G. J., Withers S. G.. ( 2008;). Glycosyltransferases: structures, functions, and mechanisms. . Annu Rev Biochem 77:, 521–555. [CrossRef][PubMed]
    [Google Scholar]
  16. Manzo N., D’Apuzzo E., Coutinho P. M., Cutting S. M., Henrissat B., Ricca E.. ( 2011;). Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation. . BMC Microbiol 11:, 198. [CrossRef][PubMed]
    [Google Scholar]
  17. Osawa A., Ishii Y., Sasamura N., Morita M., Köcher S., Müller V., Sandmann G., Shindo K.. ( 2010;). Hydroxy-3,4-dehydro-apo-8′-lycopene and methyl hydroxy-3,4-dehydro-apo-8′-lycopenoate, novel C30 carotenoids produced by a mutant of marine bacterium Halobacillus halophilus. . J Antibiot (Tokyo) 63:, 291–295. [CrossRef][PubMed]
    [Google Scholar]
  18. Osawa A., Iki K., Sandmann G., Shindo K.. ( 2013;). Isolation and identification of 4, 4′-diapolycopene-4,4′-dioic acid produced by Bacillus firmus GB1 and its singlet oxygen quenching activity. . J Oleo Sci 62:, 955–960. [CrossRef][PubMed]
    [Google Scholar]
  19. Pelz A., Wieland K. P., Putzbach K., Hentschel P., Albert K., Götz F.. ( 2005;). Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. . J Biol Chem 280:, 32493–32498. [CrossRef][PubMed]
    [Google Scholar]
  20. Perez-Fons L., Steiger S., Khaneja R., Bramley P. M., Cutting S. M., Sandmann G., Fraser P. D.. ( 2011;). Identification and the developmental formation of carotenoid pigments in the yellow/orange Bacillus spore-formers. . Biochim Biophys Acta 1811:, 177–185. [CrossRef][PubMed]
    [Google Scholar]
  21. Raisig A., Sandmann G.. ( 1999;). 4,4′-Diapophytoene desaturase: catalytic properties of an enzyme from the C30 carotenoid pathway of Staphylococcus aureus. . J Bacteriol 181:, 6184–6187.[PubMed]
    [Google Scholar]
  22. Raisig A., Sandmann G.. ( 2001;). Functional properties of diapophytoene and related desaturases of C30 and C40 carotenoid biosynthetic pathways. . Biochim Biophys Acta 1533:, 164–170. [CrossRef][PubMed]
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: A Laborator Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  24. Sandmann G.. ( 2009;). Evolution of carotene desaturation: the complication of a simple pathway. . Arch Biochem Biophys 483:, 169–174. [CrossRef][PubMed]
    [Google Scholar]
  25. Shindo K., Mikami K., Tamesada E., Takaichi S., Adachi K., Misawa N., Maoka T.. ( 2007;). Diapolycopenedioic acid xylosyl ester, a novel glycol-C30-carotenoic acid produced by a new marine bacterium Rubritalea squalenifaciens. . Tetrahedron Lett 48:, 2725–2727. [CrossRef]
    [Google Scholar]
  26. Shindo K., Endo M., Miyake Y., Wakasugi K., Morritt D., Bramley P. M., Fraser P. D., Kasai H., Misawa N.. ( 2008;). Methyl glucosyl-3,4-dehydro-apo-8′-lycopenoate, a novel antioxidative glyco-C30-carotenoic acid produced by a marine bacterium Planococcus maritimus. . J Antibiot (Tokyo) 61:, 729–735. [CrossRef][PubMed]
    [Google Scholar]
  27. Steiger S., Mazet A., Sandmann G.. ( 2003;). Heterologous expression, purification, and enzymatic characterization of the acyclic carotenoid 1,2-hydratase from Rubrivivax gelatinosus. . Arch Biochem Biophys 414:, 51–58. [CrossRef][PubMed]
    [Google Scholar]
  28. Steiger S., Perez-Fons L., Fraser P. D., Sandmann G.. ( 2012a;). The biosynthetic pathway to a novel derivative of 4,4′-diapolycopene-4,4′-oate in a red strain of Sporosarcina aquimarina. . Arch Microbiol 194:, 779–784. [CrossRef][PubMed]
    [Google Scholar]
  29. Steiger S., Perez-Fons L., Fraser P. D., Sandmann G.. ( 2012b;). Biosynthesis of a novel C30 carotenoid in Bacillus firmus isolates. . J Appl Microbiol 113:, 888–895. [CrossRef][PubMed]
    [Google Scholar]
  30. Sun Z., Shen S., Wang C., Wang H., Hu Y., Jiao J., Ma T., Tian B., Hua Y.. ( 2009;). A novel carotenoid 1,2-hydratase (CruF) from two species of the non-photosynthetic bacterium Deinococcus. . Microbiology 155:, 2775–2783. [CrossRef][PubMed]
    [Google Scholar]
  31. Takaichi S., Oh-Oka H., Maoka T., Jung D. O., Madigan M. T.. ( 2003;). Novel carotenoid glucoside esters from alkaliphilic heliobacteria. . Arch Microbiol 179:, 95–100.[PubMed]
    [Google Scholar]
  32. Tao L., Schenzle A., Odom J. M., Cheng Q.. ( 2005;). Novel carotenoid oxidase involved in biosynthesis of 4,4′-diapolycopene dialdehyde. . Appl Environ Microbiol 71:, 3294–3301. [CrossRef][PubMed]
    [Google Scholar]
  33. Taylor R. F.. ( 1984;). Bacterial triterpenoids. . Microbiol Rev 48:, 181–198.[PubMed]
    [Google Scholar]
  34. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  35. Wagner W. P., Helmig D., Fall R.. ( 2000;). Isoprene biosynthesis in Bacillus subtilis via the methylerythritol phosphate pathway. . J Nat Prod 63:, 37–40. [CrossRef][PubMed]
    [Google Scholar]
  36. Wilding E. I., Brown J. R., Bryant A. P., Chalker A. F., Holmes D. J., Ingraham K. A., Iordanescu S., So C. Y., Rosenberg M., Gwynn M. N.. ( 2000;). Identification, evolution, and essentiality of the mevalonate pathway for isopentenyl diphosphate biosynthesis in Gram-positive cocci. . J Bacteriol 182:, 4319–4327. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083519-0
Loading
/content/journal/micro/10.1099/mic.0.083519-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error