1887

Abstract

is a Gram-negative soil bacterium that genetically transforms plants and, under laboratory conditions, also transforms non-plant organisms, such as fungi and yeasts. During the transformation process a piece of ssDNA (T-strand) is transferred into the host cells via a type IV secretion system. The VirD2 relaxase protein, which is covalently attached at the 5′ end of the T-strand through Tyr29, mediates nuclear entry as it contains a nuclear localization sequence. How the T-strand reaches the chromatin and becomes integrated in the chromosomal DNA is still far from clear. Here, we investigated whether VirD2 binds to histone proteins in the yeast . Using immobilized GFP-VirD2 and synthesized His-tagged proteins, interactions between VirD2 and the histones H2A, H2B, H3 and H4 were revealed. , these interactions were confirmed by bimolecular fluorescence complementation experiments. After co-cultivation of strains expressing VirD2 tagged with a fragment of the yellow fluorescent protein analogue Venus with yeast strains expressing histone H2A or H2B tagged with the complementary part of Venus, fluorescence was detected in dot-shaped structures in the recipient yeast cells. The results indicated that VirD2 was transferred from to yeast cells and that it interacted with histones in the host cell, and thus may help direct the T-DNA (transferred DNA) to the chromatin as a prelude to integration into the host chromosomal DNA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083410-0
2015-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/401.html?itemId=/content/journal/micro/10.1099/mic.0.083410-0&mimeType=html&fmt=ahah

References

  1. Bakó L., Umeda M., Tiburcio A. F., Schell J., Koncz C. 2003; The VirD2 pilot protein of Agrobacterium-transferred DNA interacts with the TATA box-binding protein and a nuclear protein kinase in plants. Proc Natl Acad Sci U S A 100:10108–10113 [View Article][PubMed]
    [Google Scholar]
  2. Beijersbergen A., Dulk-Ras A. D., Schilperoort R. A., Hooykaas P. J. J. 1992; Conjugative transfer by the virulence system of Agrobacterium tumefaciens . Science 256:1324–1327 [View Article][PubMed]
    [Google Scholar]
  3. Bloemberg G. V., Wijfjes A. H., Lamers G. E., Stuurman N., Lugtenberg B. J. 2000; Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant Microbe Interact 13:1170–1176 [View Article][PubMed]
    [Google Scholar]
  4. Bundock P., den Dulk-Ras A., Beijersbergen A., Hooykaas P. J. J. 1995; Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae . EMBO J 14:3206–3214[PubMed]
    [Google Scholar]
  5. Chilton M. D., Que Q. 2003; Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133:956–965 [View Article][PubMed]
    [Google Scholar]
  6. Christie P. J., Atmakuri K., Krishnamoorthy V., Jakubowski S., Cascales E. 2005; Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu Rev Microbiol 59:451–485 [View Article][PubMed]
    [Google Scholar]
  7. Citovsky V., Warnick D., Zambryski P. 1994; Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc Natl Acad Sci U S A 91:3210–3214 [View Article][PubMed]
    [Google Scholar]
  8. de Groot M. J., Bundock P., Hooykaas P. J. J., Beijersbergen A. G. 1998; Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842 [View Article][PubMed]
    [Google Scholar]
  9. den Dulk-Ras A., Hooykaas P. J. J. 1995; Electroporation of Agrobacterium tumefaciens . Methods Mol Biol 55:63–72[PubMed]
    [Google Scholar]
  10. Djamei A., Pitzschke A., Nakagami H., Rajh I., Hirt H. 2007; Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318:453–456 [View Article][PubMed]
    [Google Scholar]
  11. Gelvin S. B. 2012; Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front Plant Sci 3:52 [View Article][PubMed]
    [Google Scholar]
  12. Gelvin S. B., Kim S. I. 2007; Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochim Biophys Acta 1769:410–421 [View Article][PubMed]
    [Google Scholar]
  13. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. 1995; Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360 [View Article][PubMed]
    [Google Scholar]
  14. Guo M., Hou Q., Hew C. L., Pan S. Q. 2007; Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters. Mol Plant Microbe Interact 20:1201–1212 [View Article][PubMed]
    [Google Scholar]
  15. Herrera-Estrella A., Chen Z. M., Van Montagu M., Wang K. 1988; VirD proteins of Agrobacterium tumefaciens are required for the formation of a covalent DNA–protein complex at the 5′ terminus of T-strand molecules. EMBO J 7:4055–4062[PubMed]
    [Google Scholar]
  16. Hooykaas P. J. J., Beijersbergen A. J. J. 1994; The virulence system of Agrobacterium tumefaciens . Annu Rev Phytopathol 32:157–181 [View Article]
    [Google Scholar]
  17. Howard E. A., Zupan J. R., Citovsky V., Zambryski P. C. 1992; The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68:109–118 [View Article][PubMed]
    [Google Scholar]
  18. Jurado Jacome E. 2011) Agrobacterium infection: translocation of virulence proteins and role of VirF in host cells . PhD thesis, Institute of Biology, Leiden University, The Netherlands
    [Google Scholar]
  19. Lacroix B., Tzfira T., Vainstein A., Citovsky V. 2006; A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37 [View Article][PubMed]
    [Google Scholar]
  20. Lacroix B., Loyter A., Citovsky V. 2008; Association of the Agrobacterium T-DNA-protein complex with plant nucleosomes. Proc Natl Acad Sci U S A 105:15429–15434 [View Article][PubMed]
    [Google Scholar]
  21. Li X., Yang Q., Tu H., Lim Z., Pan S. Q. 2014; Direct visualization of Agrobacterium-delivered VirE2 in recipient cells. Plant J 77:487–495 [View Article][PubMed]
    [Google Scholar]
  22. Loyter A., Rosenbluh J., Zakai N., Li J., Kozlovsky S. V., Tzfira T., Citovsky V. 2005; The plant VirE2 interacting protein 1. a molecular link between the Agrobacterium T-complex and the host cell chromatin?. Plant Physiol 138:1318–1321 [View Article][PubMed]
    [Google Scholar]
  23. Magori S., Citovsky V. 2011; Epigenetic control of Agrobacterium T-DNA integration. Biochim Biophys Acta 1809:388–394 [View Article][PubMed]
    [Google Scholar]
  24. McCullen C. A., Binns A. N. 2006; Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127 [View Article][PubMed]
    [Google Scholar]
  25. Mysore K. S., Bassuner B., Deng X. B., Darbinian N. S., Motchoulski A., Ream W., Gelvin S. B. 1998; Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mol Plant Microbe Interact 11:668–683 [View Article][PubMed]
    [Google Scholar]
  26. Mysore K. S., Nam J., Gelvin S. B. 2000; An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci U S A 97:948–953 [View Article][PubMed]
    [Google Scholar]
  27. Pansegrau W., Schoumacher F., Hohn B., Lanka E. 1993; Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci U S A 90:11538–11542 [View Article][PubMed]
    [Google Scholar]
  28. Piers K. L., Heath J. D., Liang X., Stephens K. M., Nester E. W. 1996; Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci U S A 93:1613–1618 [View Article][PubMed]
    [Google Scholar]
  29. Pitzschke A., Hirt H. 2010; New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 29:1021–1032 [View Article][PubMed]
    [Google Scholar]
  30. Porter S. G., Yanofsky M. F., Nester E. W. 1987; Molecular characterization of the virD operon from Agrobacterium tumefaciens . Nucleic Acids Res 15:7503–7517 [View Article][PubMed]
    [Google Scholar]
  31. Rossi L., Hohn B., Tinland B. 1993; The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol Gen Genet 239:345–353 [View Article][PubMed]
    [Google Scholar]
  32. Sakalis P. A. 2013) Visualizing virulence proteins and their translocation into the host during Agrobacterium-mediated transformation . PhD thesis, Institute of Biology, Leiden University, The Netherlands
    [Google Scholar]
  33. Sakalis P. A., van Heusden G. P. H., Hooykaas P. J. J. 2014; Visualization of VirE2 protein translocation by the Agrobacterium type IV secretion system into host cells. Microbiologyopen 3:104–117 [View Article][PubMed]
    [Google Scholar]
  34. Salomon S., Puchta H. 1998; Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095 [View Article][PubMed]
    [Google Scholar]
  35. Sheng J., Citovsky V. 1996; Agrobacterium–plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710 [View Article][PubMed]
    [Google Scholar]
  36. Shi Y., Lee L. Y., Gelvin S. B. 2014; Is VIP1 important for Agrobacterium-mediated transformation?. Plant J 79:848–860[PubMed] [CrossRef]
    [Google Scholar]
  37. Smith E. F., Townsend C. O. 1907; A plant-tumor of bacterial origin. Science 25:671–673 [View Article][PubMed]
    [Google Scholar]
  38. Soltani J. 2009) Host genes involved in Agrobacterium-mediated transformation . PhD thesis, Institute of Biology, Leiden University, The Netherlands
    [Google Scholar]
  39. Soltani J., van Heusden G. P. H., Hooykaas P. J. J. 2009; Deletion of host histone acetyltransferases and deacetylases strongly affects Agrobacterium-mediated transformation of Saccharomyces cerevisiae . FEMS Microbiol Lett 298:228–233 [View Article][PubMed]
    [Google Scholar]
  40. Sung M. K., Huh W. K. 2007; Bimolecular fluorescence complementation analysis system for in vivo detection of protein–protein interaction in Saccharomyces cerevisiae . Yeast 24:767–775 [View Article][PubMed]
    [Google Scholar]
  41. Tenea G. N., Spantzel J., Lee L. Y., Zhu Y., Lin K., Johnson S. J., Gelvin S. B. 2009; Overexpression of several Arabidopsis histone genes increases Agrobacterium-mediated transformation and transgene expression in plants. Plant Cell 21:3350–3367 [View Article][PubMed]
    [Google Scholar]
  42. Tinland B., Schoumacher F., Gloeckler V., Bravo-Angel A. M., Hohn B. 1995; The Agrobacterium tumefaciens virulence D2 protein is responsible for precise integration of T-DNA into the plant genome. EMBO J 14:3585–3595[PubMed]
    [Google Scholar]
  43. Tzfira T., Vaidya M., Citovsky V. 2001; VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20:3596–3607 [View Article][PubMed]
    [Google Scholar]
  44. van Attikum H., Hooykaas P. J. J. 2003; Genetic requirements for the targeted integration of Agrobacterium T-DNA in Saccharomyces cerevisiae . Nucleic Acids Res 31:826–832 [View Article][PubMed]
    [Google Scholar]
  45. van Kregten M. 2011) VirD2 of Agrobacterium tumefaciens: functional domains and biotechnological applications . PhD thesis, Institute of Biology, Leiden University, The Netherlands
    [Google Scholar]
  46. van Kregten M., Lindhout B. I., Hooykaas P. J. J., van der Zaal B. J. 2009; Agrobacterium-mediated T-DNA transfer and integration by minimal VirD2 consisting of the relaxase domain and a type IV secretion system translocation signal. Mol Plant Microbe Interact 22:1356–1365 [View Article][PubMed]
    [Google Scholar]
  47. Vergunst A. C., Schrammeijer B., den Dulk-Ras A., de Vlaam C. M., Regensburg-Tuïnk T. J., Hooykaas P. J. J. 2000; VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science 290:979–982 [View Article][PubMed]
    [Google Scholar]
  48. Vogel A. M., Das A. 1992; Mutational analysis of Agrobacterium tumefaciens virD2: tyrosine 29 is essential for endonuclease activity. J Bacteriol 174:303–308[PubMed]
    [Google Scholar]
  49. Yanofsky M. F., Porter S. G., Young C., Albright L. M., Gordon M. P., Nester E. W. 1986; The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47:471–477 [View Article][PubMed]
    [Google Scholar]
  50. Yi H., Mysore K. S., Gelvin S. B. 2002; Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation. Plant J 32:285–298 [View Article][PubMed]
    [Google Scholar]
  51. Young C., Nester E. W. 1988; Association of the virD2 protein with the 5′ end of T strands in Agrobacterium tumefaciens . J Bacteriol 170:3367–3374[PubMed]
    [Google Scholar]
  52. Zhu Y., Nam J., Humara J. M., Mysore K. S., Lee L. Y., Cao H., Valentine L., Li J., Kaiser A. D. & other authors ( 2003; Identification of Arabidopsis rat mutants. Plant Physiol 132:494–505 [View Article][PubMed]
    [Google Scholar]
  53. Zonneveld B. J. M. 1986; Cheap and simple yeast media. J Microbiol Methods 4:287–291 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083410-0
Loading
/content/journal/micro/10.1099/mic.0.083410-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error