A quinol oxidase, encoded by , is utilized to adapt to lower O concentrations in CFN42 Free

Abstract

Bacteria have branched aerobic respiratory chains that terminate at different terminal oxidases. These terminal oxidases have varying properties such as their affinity for oxygen, transcriptional regulation and proton pumping ability. The focus of this study was a quinol oxidase encoded by . Although this oxidase (Cyo) is widespread among bacteria, not much is known about its role in the cell, particularly in bacteria that contain both cytochrome oxidases and quinol oxidases. Using CFN42 as a model organism, a mutant was analysed for its ability to grow in batch cultures at high (21 % O) and low (1 and 0.1 % O) ambient oxygen concentrations. In comparison with other oxidase mutants, the mutant had a significantly longer lag phase under low-oxygen conditions. Using a  ::  transcriptional fusion, it was shown that expression in the wild type peaks between 1 and 2.5 % O. In addition, it was shown with quantitative reverse transcriptase PCR that is upregulated approximately fivefold in 1 % O compared with fully aerobic (21 % O) conditions. Analysis of the mutant during symbiosis with indicated that Cyo is utilized during early development of the symbiosis. Although it is commonly thought that Cyo is utilized only at higher oxygen concentrations, the results from this study indicate that Cyo is important for adaptation to and sustained growth under low oxygen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083386-0
2015-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/203.html?itemId=/content/journal/micro/10.1099/mic.0.083386-0&mimeType=html&fmt=ahah

References

  1. Alexeyev M. F. 1995; Three kanamycin resistance gene cassettes with different polylinkers. Biotechniques 18:52–56, 54, 56[PubMed]
    [Google Scholar]
  2. Alexeyev M. F., Shokolenko I. N., Croughan T. P. 1995; Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160:63–67 [View Article][PubMed]
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  4. Bobik C., Meilhoc E., Batut J. 2006; FixJ: a major regulator of the oxygen limitation response and late symbiotic functions of Sinorhizobium meliloti . J Bacteriol 188:4890–4902 [View Article][PubMed]
    [Google Scholar]
  5. Bott M., Bolliger M., Hennecke H. 1990; Genetic analysis of the cytochrome c-aa3 branch of the Bradyrhizobium japonicum respiratory chain. Mol Microbiol 4:2147–2157 [View Article][PubMed]
    [Google Scholar]
  6. Box J., Noel K. D. 2011; Controlling the expression of rhizobial genes during nodule development with elements and an inducer of the lac operon. Mol Plant Microbe Interact 24:478–486 [View Article][PubMed]
    [Google Scholar]
  7. Bueno E., Mesa S., Bedmar E. J., Richardson D. J., Delgado M. J. 2012; Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 16:819–852 [View Article][PubMed]
    [Google Scholar]
  8. D’Mello R., Hill S., Poole R. K. 1995; The oxygen affinity of cytochrome bo’ in Escherichia coli determined by the deoxygenation of oxyleghemoglobin and oxymyoglobin: Km values for oxygen are in the submicromolar range. J Bacteriol 177:867–870[PubMed]
    [Google Scholar]
  9. D’Mello R., Hill S., Poole R. K. 1996; The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142:755–763 [View Article][PubMed]
    [Google Scholar]
  10. Delgado M. J., Bedmar E. J., Downie J. A. 1998; Genes involved in the formation and assembly of rhizobial cytochromes and their role in symbiotic nitrogen fixation. Adv Microb Physiol 40:191–231 [View Article][PubMed]
    [Google Scholar]
  11. Dombrecht B., Vanderleyden J., Michiels J. 2001; Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in gram-negative bacteria. Mol Plant Microbe Interact 14:426–430 [CrossRef]
    [Google Scholar]
  12. Duelli D. M., Tobin A., Box J. M., Kolli V. S. K., Carlson R. W., Noel K. D. 2001; Genetic locus required for antigenic maturation of Rhizobium etli CE3 lipopolysaccharide. J Bacteriol 183:6054–6064 [View Article][PubMed]
    [Google Scholar]
  13. Dzandu J. K., Deh M. E., Barratt D. L., Wise G. E. 1984; Detection of erythrocyte membrane proteins, sialoglycoproteins, and lipids in the same polyacrylamide gel using a double-staining technique. Proc Natl Acad Sci U S A 81:1733–1737 [View Article][PubMed]
    [Google Scholar]
  14. Finan T. M., Kunkel B., De Vos G. F., Signer E. R. 1986; Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72[PubMed]
    [Google Scholar]
  15. García-Horsman J. A., Barquera B., Rumbley J., Ma J., Gennis R. B. 1994; The superfamily of heme-copper respiratory oxidases. J Bacteriol 176:5587–5600[PubMed]
    [Google Scholar]
  16. Girard L., Brom S., Dávalos A., López O., Soberón M., Romero D. 2000; Differential regulation of fixN-reiterated genes in Rhizobium etli by a novel fixL-fixK cascade. Mol Plant Microbe Interact 13:1283–1292 [View Article][PubMed]
    [Google Scholar]
  17. Glazebrook J., Walker G. C. 1991; Genetic techniques in Rhizobium meliloti . Methods Enzymol 204:398–418 [View Article][PubMed]
    [Google Scholar]
  18. González V., Santamaría R. I., Bustos P., Hernández-González I., Medrano-Soto A., Moreno-Hagelsieb G., Janga S. C., Ramírez M. A., Jiménez-Jacinto V. & other authors ( 2006; The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci U S A 103:3834–3839 [View Article][PubMed]
    [Google Scholar]
  19. Granados-Baeza M. J., Gómez-Hernández N., Mora Y., Delgado M. J., Romero D., Girard L. 2007; Novel reiterated Fnr-type proteins control the production of the symbiotic terminal oxidase cbb3 in Rhizobium etli CFN42. Mol Plant Microbe Interact 20:1241–1249 [View Article][PubMed]
    [Google Scholar]
  20. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [View Article][PubMed]
    [Google Scholar]
  21. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86 [View Article][PubMed]
    [Google Scholar]
  22. Jahn O. J., Davila G., Romero D., Noel K. D. 2003; BacS: an abundant bacteroid protein in Rhizobium etli whose expression ex planta requires nifA . Mol Plant Microbe Interact 16:65–73 [View Article][PubMed]
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  24. Landeta C., Dávalos A., Cevallos M. Á., Geiger O., Brom S. C., Romero D. 2011; Plasmids with a chromosome-like role in rhizobia. J Bacteriol 193:1317–1326 [View Article][PubMed]
    [Google Scholar]
  25. Lopez O., Morera C., Miranda-Rios J., Girard L., Romero D., Soberón M. 2001; Regulation of gene expression in response to oxygen in Rhizobium etli: role of FnrN in fixNOQP expression and in symbiotic nitrogen fixation. J Bacteriol 183:6999–7006 [View Article][PubMed]
    [Google Scholar]
  26. Ludwig B. 1986; Cytochrome c oxidase from Paracoccus denitrificans . Methods Enzymol 126:153–159 [View Article][PubMed]
    [Google Scholar]
  27. Michiels J., Moris M., Dombrecht B., Verreth C., Vanderleyden J. 1998; Differential regulation of Rhizobium etli rpoN2 gene expression during symbiosis and free-living growth. J Bacteriol 180:3620–3628[PubMed]
    [Google Scholar]
  28. Moris M., Dombrecht B., Xi C., Vanderleyden J., Michiels J. 2004; Regulatory role of Rhizobium etli CNPAF512 fnrN during symbiosis. Appl Environ Microbiol 70:1287–1296 [View Article][PubMed]
    [Google Scholar]
  29. Morris R. L., Schmidt T. M. 2013; Shallow breathing: bacterial life at low O2 . Nat Rev Microbiol 11:205–212 [View Article][PubMed]
    [Google Scholar]
  30. Noel K. D., Carneol M., Brill W. J. 1982; Nodule protein synthesis and nitrogenase activity of soybeans exposed to fixed nitrogen. Plant Physiol 70:1236–1241 [View Article][PubMed]
    [Google Scholar]
  31. Noel K. D., Sanchez A., Fernandez L., Leemans J., Cevallos M. A. 1984; Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol 158:148–155[PubMed]
    [Google Scholar]
  32. Ojeda K. J., Box J. M., Noel K. D. 2010; Genetic basis for Rhizobium etli CE3 O-antigen O-methylated residues that vary according to growth conditions. J Bacteriol 192:679–690 [View Article][PubMed]
    [Google Scholar]
  33. Poole R. K., Cook G. M. 2000; Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol 43:165–224 [View Article][PubMed]
    [Google Scholar]
  34. Preisig O., Zufferey R., Thöny-Meyer L., Appleby C. A., Hennecke H. 1996; A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum . J Bacteriol 178:1532–1538[PubMed]
    [Google Scholar]
  35. Richhardt J., Luchterhand B., Bringer S., Büchs J., Bott M. 2013; Evidence for a key role of cytochrome bo3 oxidase in respiratory energy metabolism of Gluconobacter oxydans . J Bacteriol 195:4210–4220 [View Article][PubMed]
    [Google Scholar]
  36. Richter O. M. H., Tao J. S., Turba A., Ludwig B. 1994; A cytochrome ba3 functions as a quinol oxidase in Paracoccus denitrificans. Purification, cloning, and sequence comparison. J Biol Chem 269:23079–23086[PubMed]
    [Google Scholar]
  37. Rieske J. S. 1967; Preparation and properties of reduced coenzyme Q-cytochrome c reductase (complex III of the respiratory chain). Methods Enzymol 10:239–245 [View Article]
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schweizer H. D. 1993; Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–834[PubMed]
    [Google Scholar]
  40. Soberón M., Williams H. D., Poole R. K., Escamilla E. 1989; Isolation of a Rhizobium phaseoli cytochrome mutant with enhanced respiration and symbiotic nitrogen fixation. J Bacteriol 171:465–472[PubMed]
    [Google Scholar]
  41. Soberón M., Membrillo-Hernández J., Aguilar G. R., Sánchez F. 1990; Isolation of Rhizobium phaseoli Tn5-induced mutants with altered expression of cytochrome terminal oxidases o and aa3 . J Bacteriol 172:1676–1680[PubMed]
    [Google Scholar]
  42. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9:27–39 [View Article][PubMed]
    [Google Scholar]
  43. Surpin M. A., Maier R. J. 1998; Roles of the bradyrhizobium japonicum terminal oxidase complexes in microaerobic H2-dependent growth. Biochim Biophys Acta 1364:37–45 [View Article][PubMed]
    [Google Scholar]
  44. Surpin M. A., Maier R. J. 1999; Symbiotic deficiencies associated with a coxWXYZ mutant of bradyrhizobium japonicum . Appl Environ Microbiol 65:339–341[PubMed]
    [Google Scholar]
  45. Surpin M. A., Lübben M., Maier R. J. 1996; The Bradyrhizobium japonicum coxWXYZ gene cluster encodes a bb3-type ubiquinol oxidase. Gene 183:201–206 [View Article][PubMed]
    [Google Scholar]
  46. Trzebiatowski J. R., Ragatz D. M., de Bruijn F. J. 2001; Isolation and regulation of Sinorhizobium meliloti 1021 loci induced by oxygen limitation. Appl Environ Microbiol 67:3728–3731 [View Article][PubMed]
    [Google Scholar]
  47. Tseng C. P., Albrecht J., Gunsalus R. P. 1996; Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli . J Bacteriol 178:1094–1098[PubMed]
    [Google Scholar]
  48. Wilson K. J., Sessitsch A., Corbo J. C., Giller K. E., Akkermans A. D. L., Jefferson R. A. 1995; β-Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other gram-negative bacteria. Microbiology 141:1691–1705 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083386-0
Loading
/content/journal/micro/10.1099/mic.0.083386-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed