1887

Abstract

was discovered to oxidize completely the aromatic amino acids tyrosine, phenylalanine and tryptophan when Fe(III) oxide was provided as an electron acceptor. This property had not been reported previously for a hyperthermophilic archaeon. It appeared that follows a pathway for phenylalanine and tryptophan degradation similar to that of mesophilic nitrate-reducing bacteria, and EbN1. Phenylacetate, 4-hydroxyphenylacetate and indole-3-acetate were formed during anaerobic degradation of phenylalanine, tyrosine and tryptophan, respectively. Candidate genes for enzymes involved in the anaerobic oxidation of phenylalanine to phenylacetate (phenylalanine transaminase, phenylpyruvate decarboxylase and phenylacetaldehyde : ferredoxin oxidoreductase) were identified in the genome. In addition, transcription of candidate genes for the anaerobic phenylacetate degradation, benzoyl-CoA degradation and glutaryl-CoA degradation pathways was significantly upregulated in microarray and quantitative real-time-PCR studies comparing phenylacetate-grown cells with acetate-grown cells. These results suggested that the general strategies for anaerobic degradation of aromatic amino acids are highly conserved amongst bacteria and archaea living in both mesophilic and hyperthermophilic environments. They also provided insights into the diverse metabolism of species living in hyperthermophilic environments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.083261-0
2014-12-01
2019-09-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2694.html?itemId=/content/journal/micro/10.1099/mic.0.083261-0&mimeType=html&fmt=ahah

References

  1. Anders H. J., Kaetzke A., Kämpfer P., Ludwig W., Fuchs G.. ( 1995;). Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. . Int J Syst Bacteriol 45:, 327–333. [CrossRef][PubMed]
    [Google Scholar]
  2. Anderson I., Risso C., Holmes D., Lucas S., Copeland A., Lapidus A., Cheng J. F., Bruce D., Goodwin L.. & other authors ( 2011;). Complete genome sequence of Ferroglobus placidus AEDII12DO. . Stand Genomic Sci 5:, 50–60. [CrossRef][PubMed]
    [Google Scholar]
  3. Andreotti G., Cubellis M. V., Nitti G., Sannia G., Mai X., Marino G., Adams M. W.. ( 1994;). Characterization of aromatic aminotransferases from the hyperthermophilic archaeon Thermococcus litoralis. . Eur J Biochem 220:, 543–549. [CrossRef][PubMed]
    [Google Scholar]
  4. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 2001;). Current Protocols in Molecular Biology. Hoboken, NJ:: Wiley;. [CrossRef]
    [Google Scholar]
  5. Baena S., Fardeau M. L., Labat M., Ollivier B., Thomas P., Garcia J. L., Patel B. K. C.. ( 1998;). Aminobacterium colombiense gen. nov. sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. . Anaerobe 4:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
  6. Baena S., Fardeau M. L., Ollivier B., Labat M., Thomas P., Garcia J. L., Patel B. K.. ( 1999;). Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. . Int J Syst Bacteriol 49:, 975–982. [CrossRef][PubMed]
    [Google Scholar]
  7. Bak F., Widdel F.. ( 1986;). Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov.. Arch Microbiol 146:, 177–180. [CrossRef]
    [Google Scholar]
  8. Balba M. T., Evans W. C.. ( 1980;). Methanogenic fermentation of the naturally occurring aromatic amino acids by a microbial consortium. . Biochem Soc Trans 8:, 625–627.[PubMed]
    [Google Scholar]
  9. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S.. ( 1979;). Methanogens: reevaluation of a unique biological group. . Microbiol Rev 43:, 260–296.[PubMed]
    [Google Scholar]
  10. Barden T. C.. ( 2011;). Indoles: industrial, agricultural and over-the-counter uses. . Top Heterocycl Chem 26:, 31–46.
    [Google Scholar]
  11. Barker H. A.. ( 1981;). Amino acid degradation by anaerobic bacteria. . Annu Rev Biochem 50:, 23–40. [CrossRef][PubMed]
    [Google Scholar]
  12. Bevers L. E., Hagedoorn P. L., Hagen W. R.. ( 2009;). The bioinorganic chemistry of tungsten. . Coord Chem Rev 253:, 269–290. [CrossRef]
    [Google Scholar]
  13. Blamey J. M., Adams M. W.. ( 1993;). Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. . Biochim Biophys Acta 1161:, 19–27. [CrossRef][PubMed]
    [Google Scholar]
  14. Breese K., Fuchs G.. ( 1998;). 4-Hydroxybenzoyl-CoA reductase (dehydroxylating) from the denitrifying bacterium Thauera aromatica – prosthetic groups, electron donor, and genes of a member of the molybdenum–flavin–iron–sulfur proteins. . Eur J Biochem 251:, 916–923. [CrossRef][PubMed]
    [Google Scholar]
  15. Breese K., Boll M., Alt-Mörbe J., Schägger H., Fuchs G.. ( 1998;). Genes coding for the benzoyl-CoA pathway of anaerobic aromatic metabolism in the bacterium Thauera aromatica. . Eur J Biochem 256:, 148–154. [CrossRef][PubMed]
    [Google Scholar]
  16. Breinig S., Schiltz E., Fuchs G.. ( 2000;). Genes involved in anaerobic metabolism of phenol in the bacterium Thauera aromatica. . J Bacteriol 182:, 5849–5863. [CrossRef][PubMed]
    [Google Scholar]
  17. Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M. W.. & other authors ( 2009;). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. . Clin Chem 55:, 611–622. [CrossRef][PubMed]
    [Google Scholar]
  18. Carmona M., Zamarro M. T., Blázquez B., Durante-Rodríguez G., Juárez J. F., Valderrama J. A., Barragán M. J., García J. L., Díaz E.. ( 2009;). Anaerobic catabolism of aromatic compounds: a genetic and genomic view. . Microbiol Mol Biol Rev 73:, 71–133. [CrossRef][PubMed]
    [Google Scholar]
  19. Coates J. D., Lonergan D. J., Philips E. J., Jenter H., Lovley D. R.. ( 1995;). Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. . Arch Microbiol 164:, 406–413. [CrossRef][PubMed]
    [Google Scholar]
  20. Debnar-Daumler C., Seubert A., Schmitt G., Heider J.. ( 2014;). Simultaneous involvement of a tungsten-containing aldehyde : ferredoxin oxidoreductase and a phenylacetaldehyde dehydrogenase in anaerobic phenylalanine metabolism. . J Bacteriol 196:, 483–492. [CrossRef][PubMed]
    [Google Scholar]
  21. DeMoss R. D., Moser K.. ( 1969;). Tryptophanase in diverse bacterial species. . J Bacteriol 98:, 167–171.[PubMed]
    [Google Scholar]
  22. Díaz C., Baena S., Fardeau M. L., Patel B. K.. ( 2007;). Aminiphilus circumscriptus gen. nov., sp. nov., an anaerobic amino-acid-degrading bacterium from an upflow anaerobic sludge reactor. . Int J Syst Evol Microbiol 57:, 1914–1918. [CrossRef][PubMed]
    [Google Scholar]
  23. DiDonato R. J. Jr, Young N. D., Butler J. E., Chin K. J., Hixson K. K., Mouser P., Lipton M. S., DeBoy R., Methé B. A.. ( 2010;). Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene. . PLoS ONE 5:, e14072. [CrossRef][PubMed]
    [Google Scholar]
  24. Ebenau-Jehle C., Thomas M., Scharf G., Kockelkorn D., Knapp B., Schühle K., Heider J., Fuchs G.. ( 2012;). Anaerobic metabolism of indoleacetate. . J Bacteriol 194:, 2894–2903. [CrossRef][PubMed]
    [Google Scholar]
  25. Egland P. G., Pelletier D. A., Dispensa M., Gibson J., Harwood C. S.. ( 1997;). A cluster of bacterial genes for anaerobic benzene ring biodegradation. . Proc Natl Acad Sci U S A 94:, 6484–6489. [CrossRef][PubMed]
    [Google Scholar]
  26. Eram M. S., Oduaran E., Ma K.. ( 2014;). The bifunctional pyruvate decarboxylase/pyruvate ferredoxin oxidoreductase from Thermococcus guaymasensis. . Archaea 2014:, 349379. [CrossRef][PubMed]
    [Google Scholar]
  27. Erb T. J., Ismail W., Fuchs G.. ( 2008;). Phenylacetate metabolism in thermophiles: characterization of phenylacetate-CoA ligase, the initial enzyme of the hybrid pathway in Thermus thermophilus. . Curr Microbiol 57:, 27–32. [CrossRef][PubMed]
    [Google Scholar]
  28. Evans W. C., Fuchs G.. ( 1988;). Anaerobic degradation of aromatic compounds. . Annu Rev Microbiol 42:, 289–317. [CrossRef][PubMed]
    [Google Scholar]
  29. Fonknechten N., Chaussonnerie S., Tricot S., Lajus A., Andreesen J. R., Perchat N., Pelletier E., Gouyvenoux M., Barbe V.. & other authors ( 2010;). Clostridium sticklandii, a specialist in amino acid degradation: revisiting its metabolism through its genome sequence. . BMC Genomics 11:, 555. [CrossRef][PubMed]
    [Google Scholar]
  30. Fuchs G., Boll M., Heider J.. ( 2011;). Microbial degradation of aromatic compounds – from one strategy to four. . Nat Rev Microbiol 9:, 803–816. [CrossRef][PubMed]
    [Google Scholar]
  31. Galushko A., Minz D., Schink B., Widdel F.. ( 1999;). Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. . Environ Microbiol 1:, 415–420. [CrossRef][PubMed]
    [Google Scholar]
  32. Gazzaniga F., Stebbins R., Chang S. Z., McPeek M. A., Brenner C.. ( 2009;). Microbial NAD metabolism: lessons from comparative genomics. . Microbiol Mol Biol Rev 73:, 529–541. [CrossRef][PubMed]
    [Google Scholar]
  33. Gibson J., Dispensa M., Harwood C. S.. ( 1997;). 4-Hydroxybenzoyl coenzyme A reductase (dehydroxylating) is required for anaerobic degradation of 4-hydroxybenzoate by Rhodopseudomonas palustris and shares features with molybdenum-containing hydroxylases. . J Bacteriol 179:, 634–642.[PubMed]
    [Google Scholar]
  34. Hafenbradl D., Keller M., Dirmeier R., Rachel R., Rossnagel P., Burggraf S., Huber H., Stetter K. O.. ( 1996;). Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. . Arch Microbiol 166:, 308–314. [CrossRef][PubMed]
    [Google Scholar]
  35. Harrison F. H., Harwood C. S.. ( 2005;). The pimFABCDE operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation and participates in anaerobic benzoate degradation. . Microbiology 151:, 727–736. [CrossRef][PubMed]
    [Google Scholar]
  36. Härtel U., Eckel E., Koch J., Fuchs G., Linder D., Buckel W.. ( 1993;). Purification of glutaryl-CoA dehydrogenase from Pseudomonas sp., an enzyme involved in the anaerobic degradation of benzoate. . Arch Microbiol 159:, 174–181. [CrossRef][PubMed]
    [Google Scholar]
  37. Heider J., Boll M., Breese K., Breinig S., Ebenau-Jehle C., Feil U., Gad’on N., Laempe D., Leuthner B.. & other authors ( 1998;). Differential induction of enzymes involved in anaerobic metabolism of aromatic compounds in the denitrifying bacterium Thauera aromatica. . Arch Microbiol 170:, 120–131. [CrossRef][PubMed]
    [Google Scholar]
  38. Hirsch W., Schägger H., Fuchs G.. ( 1998;). Phenylglyoxylate:NAD+ oxidoreductase (CoA benzoylating), a new enzyme of anaerobic phenylalanine metabolism in the denitrifying bacterium Azoarcus evansii. . Eur J Biochem 251:, 907–915. [CrossRef][PubMed]
    [Google Scholar]
  39. Holmes D. E., Nevin K. P., Lovley D. R.. ( 2004a;). In situ expression of nifD in Geobacteraceae in subsurface sediments. . Appl Environ Microbiol 70:, 7251–7259. [CrossRef][PubMed]
    [Google Scholar]
  40. Holmes D. E., Nicoll J. S., Bond D. R., Lovley D. R.. ( 2004b;). Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. . Appl Environ Microbiol 70:, 6023–6030. [CrossRef][PubMed]
    [Google Scholar]
  41. Holmes D. E., Risso C., Smith J. A., Lovley D. R.. ( 2011;). Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. . Appl Environ Microbiol 77:, 5926–5933. [CrossRef][PubMed]
    [Google Scholar]
  42. Holmes D. E., Risso C., Smith J. A., Lovley D. R.. ( 2012;). Genome-scale analysis of anaerobic benzoate and phenol metabolism in the hyperthermophilic archaeon Ferroglobus placidus. . ISME J 6:, 146–157. [CrossRef][PubMed]
    [Google Scholar]
  43. Huang F., Bugg C. W., Yarus M.. ( 2000;). RNA-Catalyzed CoA, NAD, and FAD synthesis from phosphopantetheine, NMN, and FMN. . Biochemistry 39:, 15548–15555. [CrossRef][PubMed]
    [Google Scholar]
  44. Jiang K., Sanseverino J., Chauhan A., Lucas S., Copeland A., Lapidus A., Del Rio T. G., Dalin E., Tice H.. & other authors ( 2012;). Complete genome sequence of Thauera aminoaromatica strain MZ1T. . Stand Genomic Sci 6:, 325–335. [CrossRef][PubMed]
    [Google Scholar]
  45. Kaneshiro T., Slodki M. E., Plattner R. D.. ( 1983;). Tryptophan catabolism to indolepyruvic and indoleacetic acids by Rhizobium japonicum L-259 mutants. . Curr Microbiol 8:, 301–306. [CrossRef]
    [Google Scholar]
  46. Kashefi K., Tor J. M., Holmes D. E., Gaw Van Praagh C. V., Reysenbach A. L., Lovley D. R.. ( 2002;). Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. . Int J Syst Evol Microbiol 52:, 719–728. [CrossRef][PubMed]
    [Google Scholar]
  47. Kim J., Hetzel M., Boiangiu C. D., Buckel W.. ( 2004;). Dehydration of (R)-2-hydroxyacyl-CoA to enoyl-CoA in the fermentation of alpha-amino acids by anaerobic bacteria. . FEMS Microbiol Rev 28:, 455–468. [CrossRef][PubMed]
    [Google Scholar]
  48. Kim J. D., Rodriguez-Granillo A., Case D. A., Nanda V., Falkowski P. G.. ( 2012;). Energetic selection of topology in ferredoxins. . PLOS Comput Biol 8:, e1002463. [CrossRef][PubMed]
    [Google Scholar]
  49. Kube M., Heider J., Amann J., Hufnagel P., Kühner S., Beck A., Reinhardt R., Rabus R.. ( 2004;). Genes involved in the anaerobic degradation of toluene in a denitrifying bacterium, strain EbN1. . Arch Microbiol 181:, 182–194. [CrossRef][PubMed]
    [Google Scholar]
  50. Kuever J., Könneke M., Galushko A., Drzyzga O.. ( 2001;). Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov.. Int J Syst Evol Microbiol 51:, 171–177.[PubMed]
    [Google Scholar]
  51. Kumagai H., Yamada H., Matsui H., Ohkishi H., Ogata K.. ( 1970;). Tyrosine phenol lyase. I. Purification, crystallization, and properties. . J Biol Chem 245:, 1767–1772.[PubMed]
    [Google Scholar]
  52. Kunow J., Linder D., Thauer R. K.. ( 1995;). Pyruvate : ferredoxin oxidoreductase from the sulfate-reducing Archaeoglobus fulgidus: molecular composition, catalytic properties, and sequence alignments. . Arch Microbiol 163:, 21–28.[PubMed]
    [Google Scholar]
  53. Larimer F. W., Chain P., Hauser L., Lamerdin J., Malfatti S., Do L., Land M. L., Pelletier D. A., Beatty J. T.. & other authors ( 2004;). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. . Nat Biotechnol 22:, 55–61. [CrossRef][PubMed]
    [Google Scholar]
  54. Letizia C. S., Cocchiara J., Lalko J., Api A. M.. ( 2003;). Fragrance material review on linalyl phenylacetate. . Food Chem Toxicol 41:, 1017–1021. [CrossRef][PubMed]
    [Google Scholar]
  55. Lovley D. R., Phillips E. J. P.. ( 1987;). Rapid assay for microbially reducible ferric iron in aquatic sediments. . Appl Environ Microbiol 53:, 1536–1540.[PubMed]
    [Google Scholar]
  56. Lovley D. R., Phillips E. J.. ( 1988;). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. . Appl Environ Microbiol 54:, 1472–1480.[PubMed]
    [Google Scholar]
  57. Luengo J. M., García J. L., Olivera E. R.. ( 2001;). The phenylacetyl-CoA catabolon: a complex catabolic unit with broad biotechnological applications. . Mol Microbiol 39:, 1434–1442. [CrossRef][PubMed]
    [Google Scholar]
  58. Mahadevan R., Yan B., Postier B., Nevin K. P., Woodard T. L., O’Neil R., Coppi M. V., Methé B. A., Krushkal J.. ( 2008;). Characterizing regulation of metabolism in Geobacter sulfurreducens through genome-wide expression data and sequence analysis. . OMICS 12:, 33–59. [CrossRef][PubMed]
    [Google Scholar]
  59. Mai X. H., Adams M. W. W.. ( 1994;). Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation. . J Biol Chem 269:, 16726–16732.[PubMed]
    [Google Scholar]
  60. Mechichi T., Stackebrandt E., Gad’on N., Fuchs G.. ( 2002;). Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov.. Arch Microbiol 178:, 26–35. [CrossRef][PubMed]
    [Google Scholar]
  61. Miller S. L.. ( 1953;). A production of amino acids under possible primitive earth conditions. . Science 117:, 528–529. [CrossRef][PubMed]
    [Google Scholar]
  62. Miller T. L., Wolin M. J.. ( 1974;). A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. . Appl Microbiol 27:, 985–987.[PubMed]
    [Google Scholar]
  63. Parker E. T., Cleaves H. J., Dworkin J. P., Glavin D. P., Callahan M., Aubrey A., Lazcano A., Bada J. L.. ( 2011;). Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. . Proc Natl Acad Sci U S A 108:, 5526–5531. [CrossRef][PubMed]
    [Google Scholar]
  64. Parthasarathy A., Kahnt J., Chowdhury N. P., Buckel W.. ( 2013;). Phenylalanine catabolism in Archaeoglobus fulgidus VC-16. . Arch Microbiol 195:, 781–797. [CrossRef][PubMed]
    [Google Scholar]
  65. Rabus R., Widdel F.. ( 1995;). Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. . Arch Microbiol 163:, 96–103. [CrossRef][PubMed]
    [Google Scholar]
  66. Rabus R., Kube M., Beck A., Widdel F., Reinhardt R.. ( 2002;). Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. . Arch Microbiol 178:, 506–516. [CrossRef][PubMed]
    [Google Scholar]
  67. Rabus R., Kube M., Heider J., Beck A., Heitmann K., Widdel F., Reinhardt R.. ( 2005;). The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. . Arch Microbiol 183:, 27–36. [CrossRef][PubMed]
    [Google Scholar]
  68. Rhee S. K., Fuchs G.. ( 1999;). Phenylacetyl-CoA : acceptor oxidoreductase, a membrane-bound molybdenum–iron–sulfur enzyme involved in anaerobic metabolism of phenylalanine in the denitrifying bacterium Thauera aromatica. . Eur J Biochem 262:, 507–515. [CrossRef][PubMed]
    [Google Scholar]
  69. Russell W. R., Duncan S. H., Scobbie L., Duncan G., Cantlay L., Calder A. G., Anderson S. E., Flint H. J.. ( 2013;). Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. . Mol Nutr Food Res 57:, 523–535. [CrossRef][PubMed]
    [Google Scholar]
  70. Schneider S., Mohamed M. E., Fuchs G.. ( 1997;). Anaerobic metabolism of l-phenylalanine via benzoyl-CoA in the denitrifying bacterium Thauera aromatica. . Arch Microbiol 168:, 310–320. [CrossRef][PubMed]
    [Google Scholar]
  71. Schut G. J., Menon A. L., Adams M. W.. ( 2001;). 2-keto acid oxidoreductases from Pyrococcus furiosus and Thermococcus litoralis. . Methods Enzymol 331:, 144–158. [CrossRef][PubMed]
    [Google Scholar]
  72. Seyfried B., Tschech A., Fuchs G., Fuchs G., Mohamed M. E.. ( 1993;). Anaerobic oxidation of phenylacetate and 4-hydroxyphenylacetate to benzoyl-coenzyme A and CO2 in denitrifying Pseudomonas sp. Evidence for an alpha-oxidation mechanism. . Arch Microbiol 159:, 563–573. [CrossRef][PubMed]
    [Google Scholar]
  73. Siddiqui M. A., Fujiwara S., Imanaka T.. ( 1997;). Indolepyruvate ferredoxin oxidoreductase from Pyrococcus sp. KOD1 possesses a mosaic structure showing features of various oxidoreductases. . Mol Gen Genet 254:, 433–439.[PubMed]
    [Google Scholar]
  74. Spaepen S., Vanderleyden J., Remans R.. ( 2007;). Indole-3-acetic acid in microbial and microorganism–plant signaling. . FEMS Microbiol Rev 31:, 425–448. [CrossRef][PubMed]
    [Google Scholar]
  75. Tersteegen A., Linder D., Thauer R. K., Hedderich R.. ( 1997;). Structures and functions of four anabolic 2-oxoacid oxidoreductases in Methanobacterium thermoautotrophicum. . Eur J Biochem 244:, 862–868. [CrossRef][PubMed]
    [Google Scholar]
  76. Tor J. M., Lovley D. R.. ( 2001;). Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. . Environ Microbiol 3:, 281–287. [CrossRef][PubMed]
    [Google Scholar]
  77. Tran H. T., Krushkal J., Antommattei F. M., Lovley D. R., Weis R. M.. ( 2008;). Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function. . BMC Genomics 9:, 471. [CrossRef][PubMed]
    [Google Scholar]
  78. van Kranenburg R., Kleerebezem M., van Hylckama Vlieg J., Ursing B. M., Boekhorst J., Smit B. A., Ayad E. H. E., Smit G., Siezen R. J.. ( 2002;). Flavour formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis. . Int Dairy J 12:, 111–121. [CrossRef]
    [Google Scholar]
  79. Wakagi T., Fukuda E., Ogawa Y., Kino H., Matsuzawa H.. ( 2002;). A novel bifunctional molybdo-enzyme catalyzing both decarboxylation of indolepyruvate and oxidation of indoleacetaldehyde from a thermoacidophilic archaeon, Sulfolobus sp. strain 7. . FEBS Lett 510:, 196–200. [CrossRef][PubMed]
    [Google Scholar]
  80. Yan B., Lovley D. R., Krushkal J.. ( 2007;). Genome-wide similarity search for transcription factors and their binding sites in a metal-reducing prokaryote Geobacter sulfurreducens. . Biosystems 90:, 421–441. [CrossRef][PubMed]
    [Google Scholar]
  81. Yokoyama S., Matsumura Y.. ( 2008;). The Asian Biomass Handbook. Tokyo:: The Japan Institute of Energy;.
    [Google Scholar]
  82. Yokooji Y., Sato T., Fujiwara S., Imanaka T., Atomi H.. ( 2013;). Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis. . J Bacteriol 195:, 1940–1948. [CrossRef][PubMed]
    [Google Scholar]
  83. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S.. ( 2011;). phast: a fast phage search tool. . Nucleic Acids Res 39: (Web Server issue), W347–W352. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.083261-0
Loading
/content/journal/micro/10.1099/mic.0.083261-0
Loading

Data & Media loading...

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error