1887

Abstract

PCL1606 synthesizes the antifungal antibiotic 2-hexyl, 5-propyl resorcinol (HPR), which is crucial for the biocontrol of fungal soil-borne pathogens. The genetic basis for HPR production lies in the genes, which are directly involved in the biosynthesis of HPR. In the present study, we elucidated the genetic features of the genes. Reverse transcription PCR experiments revealed an independent organization of the genes, except for which was transcribed as a polycistronic mRNA. analysis of each gene revealed putative promoters and terminator sequences, validating the proposed gene arrangement. Moreover, experiments utilizing 5′ rapid amplification of cDNA ends were used to determine the transcriptional initiation sites for the , , and gene promoters, and subsequently to confirm the functionality of these regions. The results of quantitative real-time PCR experiments indicated that biosynthetic genes were not only modulated through the global regulator , but also through and . The interplay between and revealed transcriptional cross-inhibition. However, these results also showed that other regulatory parameters play a role in HPR production, such as the environmental conditions and additional regulatory genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082677-0
2014-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2670.html?itemId=/content/journal/micro/10.1099/mic.0.082677-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Bertani G.. ( 1951;). A method for detection of mutations using streptomycin dependence in Escherichia coli. . Genetics 36:, 598–611.[PubMed]
    [Google Scholar]
  3. Bloemberg G. V., Lugtenberg B. J. J.. ( 2001;). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. . Curr Opin Plant Biol 4:, 343–350. [CrossRef][PubMed]
    [Google Scholar]
  4. Blumer C., Heeb S., Pessi G., Haas D.. ( 1999;). Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. . Proc Natl Acad Sci U S A 96:, 14073–14078. [CrossRef][PubMed]
    [Google Scholar]
  5. Boyer H. W., Roulland-Dussoix D.. ( 1969;). A complementation analysis of the restriction and modification of DNA in Escherichia coli. . J Mol Biol 41:, 459–472. [CrossRef][PubMed]
    [Google Scholar]
  6. Byers D. M., Gong H.. ( 2007;). Acyl carrier protein: structure–function relationships in a conserved multifunctional protein family. . Biochem Cell Biol 85:, 649–662. [CrossRef][PubMed]
    [Google Scholar]
  7. Calderón C. E., Pérez-García A., de Vicente A., Cazorla F. M.. ( 2013;). The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-hexyl, 5-propyl resorcinol. . Mol Plant Microbe Interact 26:, 554–565. [CrossRef][PubMed]
    [Google Scholar]
  8. Calderón C. E., de Vicente A., Cazorla F. M.. ( 2014;). Role of 2-hexyl, 5-propyl resorcinol production by Pseudomonas chlororaphis PCL1606 in the multitrophic interactions in the avocado rhizosphere during the biocontrol process. . FEMS Microbiol Ecol 89:, 20–31. [CrossRef][PubMed]
    [Google Scholar]
  9. Carrión V. J., Arrebola E., Cazorla F. M., Murillo J., de Vicente A.. ( 2012;). The mbo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae. . PLoS ONE 7:, e36709. [CrossRef][PubMed]
    [Google Scholar]
  10. Cazorla F. M., Duckett S. B., Bergström E. T., Noreen S., Odijk R., Lugtenberg B. J. J., Thomas-Oates J. E., Bloemberg G. V.. ( 2006;). Biocontrol of avocado Dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. . Mol Plant Microbe Interact 19:, 418–428. [CrossRef][PubMed]
    [Google Scholar]
  11. Choi K.-H., Kumar A., Schweizer H. P.. ( 2006;). A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. . J Microbiol Methods 64:, 391–397. [CrossRef][PubMed]
    [Google Scholar]
  12. Cipriano M. J., Novichkov P. N., Kazakov A. E., Rodionov D. A., Arkin A. P., Gelfand M. S., Dubchak I.. ( 2013;). RegTransBase – a database of regulatory sequences and interactions based on literature: a resource for investigating transcriptional regulation in prokaryotes. . BMC Genomics 14:, 213. [CrossRef][PubMed]
    [Google Scholar]
  13. de Bruijn I., Raaijmakers J. M.. ( 2009;). Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP protease. . J Bacteriol 191:, 1910–1923. [CrossRef][PubMed]
    [Google Scholar]
  14. de Bruijn I., de Kock M. J. D., de Waard P., van Beek T. A., Raaijmakers J. M.. ( 2008;). Massetolide A biosynthesis in Pseudomonas fluorescens. . J Bacteriol 190:, 2777–2789. [CrossRef][PubMed]
    [Google Scholar]
  15. El-Sayed A. K., Hothersall J., Thomas C. M.. ( 2001;). Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. . Microbiology 147:, 2127–2139.[PubMed]
    [Google Scholar]
  16. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  17. Filiatrault M. J., Stodghill P. V., Bronstein P. A., Moll S., Lindeberg M., Grills G., Schweitzer P., Wang W., Schroth G. P.. & other authors ( 2010;). Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. . J Bacteriol 192:, 2359–2372. [CrossRef][PubMed]
    [Google Scholar]
  18. Gallegos M. T., Schleif R., Bairoch A., Hofmann K., Ramos J. L.. ( 1997;). Arac/XylS family of transcriptional regulators. . Microbiol Mol Biol Rev 61:, 393–410.[PubMed]
    [Google Scholar]
  19. González-Sánchez M. A., Pérez-Jiménez R. M., Pliego C., Ramos C., de Vicente A., Cazorla F. M.. ( 2010;). Biocontrol bacteria selected by a direct plant protection strategy against avocado white root rot show antagonism as a prevalent trait. . J Appl Microbiol 109:, 65–78.[PubMed]
    [Google Scholar]
  20. Gross H., Loper J. E.. ( 2009;). Genomics of secondary metabolite production by Pseudomonas spp. . Nat Prod Rep 26:, 1408–1446. [CrossRef][PubMed]
    [Google Scholar]
  21. Haas D., Défago G.. ( 2005;). Biological control of soil-borne pathogens by fluorescent pseudomonads. . Nat Rev Microbiol 3:, 307–319. [CrossRef][PubMed]
    [Google Scholar]
  22. Haas D., Keel C.. ( 2003;). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. . Annu Rev Phytopathol 41:, 117–153. [CrossRef][PubMed]
    [Google Scholar]
  23. Kanda N., Ishizaki N., Inoue N., Oshima M., Handa A., Kitahara T. A. K. E. J. I.. ( 1975;). DB-2073, a new alkylresorcinol antibiotic. I. Taxonomy, isolation and characterization. . J Antibiot (Tokyo) 28:, 935–942. [CrossRef][PubMed]
    [Google Scholar]
  24. Kazakov A. E., Cipriano M. J., Novichkov P. S., Minovitsky S., Vinogradov D. V., Arkin A., Mironov A. A., Gelfand M. S., Dubchak I.. ( 2007;). RegTransBase – a database of regulatory sequences and interactions in a wide range of prokaryotic genomes. . Nucleic Acids Res 35: (Suppl 1), D407–D412. [CrossRef][PubMed]
    [Google Scholar]
  25. Kitahara T., Kanda N.. ( 1975;). DB-2073, a new alkylresorcinol antibiotic. II. The chemical structure of DB-2073. . J Antibiot (Tokyo) 28:, 943–946. [CrossRef][PubMed]
    [Google Scholar]
  26. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  27. Ma J., Campbell A., Karlin S.. ( 2002;). Correlations between Shine–Dalgarno sequences and gene features such as predicted expression levels and operon structures. . J Bacteriol 184:, 5733–5745. [CrossRef][PubMed]
    [Google Scholar]
  28. Maruyama I. N., Rakow T. L., Maruyama H. I.. ( 1995;). cRACE: a simple method for identification of the 5′ end of mRNAs. . Nucleic Acids Res 23:, 3796–3797. [CrossRef][PubMed]
    [Google Scholar]
  29. Miller J. H.. ( 1972;). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  30. Nowak-Thompson B., Hammer P. E., Hill D. S., Stafford J., Torkewitz N., Gaffney T. D., Lam S. T., Molnár I., Ligon J. M.. ( 2003;). 2,5-Dialkylresorcinol biosynthesis in Pseudomonas auranthiaca: novel head-to-head condensation of two fatty acid-derived precursors. . J Bacteriol 185:, 860–869. [CrossRef][PubMed]
    [Google Scholar]
  31. O’Callaghan J., Reen F. J., Adams C., O’Gara F.. ( 2011;). Low oxygen induces the type III secretion system in Pseudomonas aeruginosa via modulation of the small RNAs rsmZ and rsmY. . Microbiology 157:, 3417–3428. [CrossRef][PubMed]
    [Google Scholar]
  32. Raaijmakers J. M., Mazzola M.. ( 2012;). Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. . Annu Rev Phytopathol 50:, 403–424. [CrossRef][PubMed]
    [Google Scholar]
  33. Rainey P. B.. ( 1999;). Adaptation of Pseudomonas fluorescens to the plant rhizosphere. . Environ Microbiol 1:, 243–257. [CrossRef][PubMed]
    [Google Scholar]
  34. Robison K., McGuire A. M., Church G. M.. ( 1998;). A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. . J Mol Biol 284:, 241–254. [CrossRef][PubMed]
    [Google Scholar]
  35. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  36. Schnider U., Keel C., Blumer C., Troxler J., Défago G., Haas D.. ( 1995;). Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. . J Bacteriol 177:, 5387–5392.[PubMed]
    [Google Scholar]
  37. Slininger P. J., Shea-Wilbur M. A.. ( 1995;). Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. . Appl Microbiol Biotechnol 43:, 794–800. [CrossRef][PubMed]
    [Google Scholar]
  38. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lugtenberg B. J. J.. ( 1987;). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. . Plant Mol Biol 9:, 27–39. [CrossRef][PubMed]
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  40. van Rij E. T., Wesselink M., Chin-A-Woeng T. F. C., Bloemberg G. V., Lugtenberg B. J. J.. ( 2004;). Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. . Mol Plant Microbe Interact 17:, 557–566. [CrossRef][PubMed]
    [Google Scholar]
  41. Wargo M. J.. ( 2013;). Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. . Appl Environ Microbiol 79:, 2112–2120. [CrossRef][PubMed]
    [Google Scholar]
  42. Wargo M. J., Szwergold B. S., Hogan D. A.. ( 2008;). Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. . J Bacteriol 190:, 2690–2699. [CrossRef][PubMed]
    [Google Scholar]
  43. Whistler C. A., Stockwell V. O., Loper J. E.. ( 2000;). Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. . Appl Environ Microbiol 66:, 2718–2725. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082677-0
Loading
/content/journal/micro/10.1099/mic.0.082677-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error