1887

Abstract

Investigation of a series of nutrient-supplemented thixotropic gels at successive dilutions that impede the trajectories of a highly vigorous motile flagellated protist, , provides insights into both its swimming characteristics and a means for its immobilization. The progress of movement of this organism through the solidified growth medium was monitored by the reductive production of a formazan chromophore from a dissolved tetrazolium salt. The physical properties of the gels were measured using an Anton Paar rheometer. The test parameters and measurements included: angular frequency, complex viscosity, complex shear modulus, shear rate and rotational recovery. These rheological characteristics affected the forward velocity of the organism through the gels, during and after multiple resetting, information potentially useful for determination of the dynamic characteristics of flagellar movement and propulsion rates of the organism. Application to separation of single cells, individuals of distinct sizes or the differing species from mixed cultures of motile and non-motile organisms or less actively swimming species was evident. These applications can be used when isolating the parasite from the intestinal contents of its host or from faecal pellets.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082529-0
2015-01-01
2020-09-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/213.html?itemId=/content/journal/micro/10.1099/mic.0.082529-0&mimeType=html&fmt=ahah

References

  1. Bovil R. A., Shallcross J. C., Mackey B. M.. 1994; Comparison of the fluorescent redox dye 5-cyano-2,3-ditolyltetrazolium chloride with p-iodonitrotetrazolium violet to detect metabolic activity in heat-stressed Listeria monocytogenes cells. J Appl Bact77:353–358 [CrossRef]
    [Google Scholar]
  2. Brokaw C. J.. 2009; Thinking about flagellar oscillation. Cell Motil Cytoskeleton66:425–436 [CrossRef][PubMed]
    [Google Scholar]
  3. Dawson S. C., Pham J. K., House S. A., Slawson E. E., Cronembold D., Cande W. Z.. 2008; Stable transformation of an episomal protein-tagging shuttle vector in the piscine diplomonad Spironucleus vortens. BMC Microbiol8:71 [CrossRef][PubMed]
    [Google Scholar]
  4. Ginger M. L., Portman N., McKean P. G.. 2008; Swimming with protists: perception, motility and flagellum assembly. Nat Rev Microbiol6:838–850 [CrossRef][PubMed]
    [Google Scholar]
  5. Hesse F.. 1882; Cited in Hesse W. (1992) Walter and Angelina Hesse-Early contributors to Bacteriology. ASM News58:425–428
    [Google Scholar]
  6. Hill E. C.. 1998; Use of thixotropic biopolymers as an alternative to agar for the cultivation of microorganisms on solid media. Polym Degrad Stabil59:121–128 [CrossRef]
    [Google Scholar]
  7. Koch R.. 1881; Zur Untersuchung von pathogenen Organismen. Mtth a.d.Kaiserl Gesundheitsampte 1: 1–48. cited by Brock Thomas D..ed Milestones in Microbiology Washington, DC: ASM Press (1998); p.101
    [Google Scholar]
  8. Lenaghan S. C., Davis C. A., Henson W. R., Zhang Z., Zhang M.. 2011; High-speed microscopic imaging of flagella motility and swimming in Giardia lamblia trophozoites. Proc Natl Acad Sci U S A108:E550–E558 [CrossRef][PubMed]
    [Google Scholar]
  9. Lenaghan S. C., Chen J., Zhang M.. 2013; Modeling and analysis of propulsion in the multiflagellated micoorganism Giardia lamblia. Phys Rev E Stat Nonlin Soft Matter Phys88:012726 [CrossRef][PubMed]
    [Google Scholar]
  10. Lenaghan S. C., Nwandu-Vincent S., Reese B. E., Zhang M.. 2014; Unlocking the secrets of multi-flagellated propulsion: drawing insights from Tritrichomonas foetus. J R Soc Interface11:20131149 [CrossRef][PubMed]
    [Google Scholar]
  11. Loersch T., Prenzel M., Gruschwitz R., Dewes W.. 2008; Rheoplus/32 demo (Version 3.40). Anton Paar Gmbh, Graz, Austria
  12. Mewis J., Wagner N. J.. 2009; Thixotropy. Adv Colloid Interface Sci147-148:214–227 [CrossRef][PubMed]
    [Google Scholar]
  13. Mezger T. G.. 2006; The Rheology Handbook: for Users of Rotational and Oscillatory Rheometers Hannover: Vincentz Network;
    [Google Scholar]
  14. Micheli P. A.. 1729; Nova plantarum genera iuxta Tourneforti methodum disposita Florence: Orto Botanica;
    [Google Scholar]
  15. Millet C. O. M., Cable J., Lloyd D.. 2010; The diplomonad fish parasite Spironucleus vortens produces hydrogen. J Eukaryot Microbiol57:400–404 [CrossRef][PubMed]
    [Google Scholar]
  16. Millet C. O. M., Lloyd D., Williams C. F., Cable J.. 2011; In vitro culture of the diplomonad fish parasite Spironucleus vortens reveals unusually fast doubling time and atypical biphasic growth. J Fish Dis34:71–73 [CrossRef][PubMed]
    [Google Scholar]
  17. Millet C. O. M., Williams C. F., Hayes A. J., Hann A. C., Cable J., Lloyd D.. 2013; Mitochondria-derived organelles in the diplomonad fish parasite Spironucleus vortens. Exp Parasitol135:262–273 [CrossRef][PubMed]
    [Google Scholar]
  18. Mitchell D. R.. 2007; The evolution of eukaryotic cilia and flagella as motile and sensory organelles. Adv Exp Med Biol607:130–140 [CrossRef][PubMed]
    [Google Scholar]
  19. Mohri H., Inaba K., Ishijima S., Baba S. A.. 2012; Tubulin-dynein system in flagellar and ciliary movement. Proc Jpn Acad Ser B Phys Biol Sci88:397–415 [CrossRef][PubMed]
    [Google Scholar]
  20. Oda T., Yanagisawa H., Yagi T., Kikkawa M.. 2014; Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity. J Cell Biol204:807–819 [CrossRef][PubMed]
    [Google Scholar]
  21. Paull G. C., Matthews R. A.. 2001; Spironucleus vortens, a possible cause of hole-in-the-head disease in cichlids. Dis Aquat Organ45:197–202 [CrossRef][PubMed]
    [Google Scholar]
  22. Vaara T., Vaara M., Niemelä S.. 1979; Two improved methods for obtaining axenic cultures of cyanobacteria. Appl Environ Microbiol38:1011–1014[PubMed]
    [Google Scholar]
  23. Williams C. F., Lloyd D., Poynton S.L., Jorgensen A., Millet C.O.M., Cable J.. 2011; Spironucleus species: economically-important fish pathogens and enigmatic single-celled eukaryotes. J Aquacult Res DevS2:002 [CrossRef]
    [Google Scholar]
  24. Williams C. F., Millet C. O. M., Hayes A. J., Cable J., Lloyd D.. 2013a; Diversity in mitochondrion-derived organelles of the parasitic diplomonads Spironucleus and Giardia. Trends Parasitol29:311–312 [CrossRef][PubMed]
    [Google Scholar]
  25. Williams C. F., Cable J., Lloyd D., Schelkle B., Vacca A. R.. 2013b; Non-invasive estimation of Spironucleus vortens transmission in freshwater angelfish Pterophyllum scalare. Dis Aquat Organ105:211–223 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082529-0
Loading
/content/journal/micro/10.1099/mic.0.082529-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error