1887

Abstract

is a soil bacterium that is an intracellular symbiont of leguminous plants through the formation of nitrogen-fixing root nodules. Due to the changing environments that rhizobia encounter, the cell is often faced with a variety of cell altering stressors that can compromise the cell envelope integrity. A previously uncharacterized operon (RL3499–RL3502) has been linked to proper cell envelope function, and mutants display pleiotropic phenotypes including an inability to grow on peptide-rich media. In order to identify functional partners to the operon, suppressor mutants capable of growth on complex, peptide-rich media were isolated. A suppressor mutant of a non-polar mutation to RL3500 was chosen for further characterization. Transposon mutagenesis, screening for loss of the suppressor phenotype, led to the identification of a Tn insertion in an uncharacterized tetratricopeptide-repeat-containing protein RL0936. Furthermore, RL0936 had a 3.5-fold increase in gene expression in the suppressor strain when compared with the WT and a 1.5-fold increase in the original RL3500 mutant. Mutation of RL0936 decreased desiccation tolerance and lowered the ability to form biofilms when compared with the WT strain. This work has identified a potential interaction between RL0936 and the RL3499–RL3502 operon that is involved in cell envelope development in , and has described phenotypic activities to a previously uncharacterized conserved hypothetical gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082420-0
2015-01-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/148.html?itemId=/content/journal/micro/10.1099/mic.0.082420-0&mimeType=html&fmt=ahah

References

  1. Alonso-Monge R., Real E., Wojda I., Bebelman J. P., Mager W. H., Siderius M.. 2001; Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Mol Microbiol41:717–730 [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  3. Bélanger L., Dimmick K. A., Fleming J. S., Charles T. C.. 2009; Null mutations in Sinorhizobium meliloti exoS and chvI demonstrate the importance of this two-component regulatory system for symbiosis. Mol Microbiol74:1223–1237 [CrossRef][PubMed]
    [Google Scholar]
  4. Beringer J. E.. 1974; R factor transfer in Rhizobium leguminosarum . J Gen Microbiol84:188–198 [CrossRef][PubMed]
    [Google Scholar]
  5. Cerveny L., Straskova A., Dankova V., Hartlova A., Ceckova M., Staud F., Stulik J.. 2013; Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect Immun81:629–635 [CrossRef][PubMed]
    [Google Scholar]
  6. Cheng H. P., Walker G. C.. 1998; Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti . J Bacteriol180:5183–5191[PubMed]
    [Google Scholar]
  7. Clementz T., Zhou Z., Raetz C. R. H.. 1997; Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB. J Biol Chem272:10353–10360 [CrossRef][PubMed]
    [Google Scholar]
  8. Colombatti A., Bonaldo P., Doliana R.. 1993; Type A modules: interacting domains found in several non-fibrillar collagens and in other extracellular matrix proteins. Matrix13:297–306 [CrossRef][PubMed]
    [Google Scholar]
  9. Das A. K., Cohen P. W., Barford D.. 1998; The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J17:1192–1199 [CrossRef][PubMed]
    [Google Scholar]
  10. Driscoll B. T., Finan T. M.. 1993; NAD(+)-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol Microbiol7:865–873 [CrossRef][PubMed]
    [Google Scholar]
  11. Fields A. T., Navarrete C. S., Zare A. Z., Huang Z., Mostafavi M., Lewis J. C., Rezaeihaghighi Y., Brezler B. J., Ray S.. & other authors ( 2012; The conserved polarity factor PodJ1 impacts multiple cell envelope-associated functions in Sinorhizobium meliloti . Mol Microbiol84:892–920 [CrossRef][PubMed]
    [Google Scholar]
  12. Foreman D. L., Vanderlinde E. M., Bay D. C., Yost C. K.. 2010; Characterization of a gene family of outer membrane proteins (ropB) in Rhizobium leguminosarum bv. viciae VF39SM and the role of the sensor kinase ChvG in their regulation. J Bacteriol192:975–983 [CrossRef][PubMed]
    [Google Scholar]
  13. Fujishige N. A., Kapadia N. N., De Hoff P. L., Hirsch A. M.. 2006; Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol56:195–206 [CrossRef][PubMed]
    [Google Scholar]
  14. Gibson K. E., Kobayashi H., Walker G. C.. 2008; Molecular determinants of a symbiotic chronic infection. Annu Rev Genet42:413–441 [CrossRef][PubMed]
    [Google Scholar]
  15. Gilbert K. B., Vanderlinde E. M., Yost C. K.. 2007; Mutagenesis of the carboxy terminal protease CtpA decreases desiccation tolerance in Rhizobium leguminosarum . FEMS Microbiol Lett272:65–74 [CrossRef][PubMed]
    [Google Scholar]
  16. Glenn A. R., Poole P. S., Hudman J. F.. 1980; Succinate uptake by free-living and bacteroid forms of Rhizobium leguminosarum . J Gen Microbiol119:267–271
    [Google Scholar]
  17. Hayden J. D., Ades S. E.. 2008; The extracytoplasmic stress factor, sigmaE, is required to maintain cell envelope integrity in Escherichia coli. PLoS ONE3:e1573 [CrossRef][PubMed]
    [Google Scholar]
  18. Helander I. M., Mattila-Sandholm T.. 2000; Fluorometric assessment of gram-negative bacterial permeabilization. J Appl Microbiol88:213–219 [CrossRef][PubMed]
    [Google Scholar]
  19. Jensen P. E., Gibson L. C. D., Hunter D. N.. 1998; Determinants of catalytic activity with the use of purified I, D and H subunits of the magnesium protoporphyrin IX chelatase from Synechocytosis PCC6803. Biochem J344:335–344
    [Google Scholar]
  20. Johnston A. W. B., Beringer J. E.. 1975; Identification of Rhizobium strains in pea root nodules using genetic markers. J Gen Microbiol87:434–350[CrossRef]
    [Google Scholar]
  21. Lamb J. R., Tugendreich S., Hieter P.. 1995; Tetratrico peptide repeat interactions: to TPR or not to TPR?. Trends Biochem Sci20:257–259 [CrossRef][PubMed]
    [Google Scholar]
  22. Li Y., Wray R., Blount P.. 2004; Intragenic suppression of gain-of-function mutations in the Escherichia coli mechanosensitive channel, MscL. Mol Microbiol53:485–495 [CrossRef][PubMed]
    [Google Scholar]
  23. Liu Y., Huang N.. 1998; Efficient amplification of insert end sequences from bacterial artificial chromosome clones by thermal asymmetric interlaced PCR. Plant Mol Biol Rep16:175–181 [CrossRef]
    [Google Scholar]
  24. Manzon R. G., Neuls T. M., Manzon L. A.. 2007; Molecular cloning, tissue distribution, and developmental expression of lamprey transthyretins. Gen Comp Endocrinol151:55–65 [CrossRef][PubMed]
    [Google Scholar]
  25. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. O’Toole G. A., Kolter R.. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol28:449–461 [CrossRef][PubMed]
    [Google Scholar]
  27. Ogura T., Tomoyasu T., Yuki T., Morimura S., Begg K. J., Donachie W. D., Mori H., Niki H., Hiraga S.. 1991; Structure and function of the ftsH gene in Escherichia coli . Res Microbiol142:279–282 [CrossRef][PubMed]
    [Google Scholar]
  28. Ophir T., Gutnick D. L.. 1994; A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol60:740–745[PubMed]
    [Google Scholar]
  29. Oresnik I. J., Charles T. C., Finan T. M.. 1994; Second site mutations specifically suppress the Fix- phenotype of Rhizobium meliloti ndvF mutations on alfalfa: identification of a conditional NdvF-dependent mucoid colony phenotype. Genetics136:1233–1243[PubMed]
    [Google Scholar]
  30. Ponting C. P., Aravind L., Schultz J., Bork P., Koonin E. V.. 1999; Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol289:729–745 [CrossRef][PubMed]
    [Google Scholar]
  31. Quandt J., Hynes M. F.. 1993; Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene127:15–21 [CrossRef][PubMed]
    [Google Scholar]
  32. Reeve W. G., Tiwari R. P., Worsley P. S., Dilworth M. J., Glenn A. R., Howieson J. G.. 1999; Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology145:1307–1316 [CrossRef][PubMed]
    [Google Scholar]
  33. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory, NY: Cold Spring Harbor;
    [Google Scholar]
  34. Silhavy T. J., Kahne D., Walker S.. 2010; The bacterial cell envelope. Cold Spring Harb Perspect Biol2:a000414 [CrossRef][PubMed]
    [Google Scholar]
  35. Simon R., Priefer U., Pühler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology1:784–791 [CrossRef]
    [Google Scholar]
  36. Snider J., Houry W. A.. 2006; MoxR AAA+ ATPases: a novel family of molecular chaperones?. J Struct Biol156:200–209 [CrossRef][PubMed]
    [Google Scholar]
  37. Storz G., Hengge-Aronis R.. 2000; Bacterial Stress Responses pp.1–30 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  39. Tang X., Lu B. F., Pan S. Q.. 1999; A bifunctional transposon mini-Tn5gfp-km which can be used to select for promoter fusions and report gene expression levels in Agrobacterium tumefaciens . FEMS Microbiol Lett179:37–42 [CrossRef][PubMed]
    [Google Scholar]
  40. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  41. Vanderlinde E. M., Yost C. K.. 2012; Mutation of the sensor kinase chvG in Rhizobium leguminosarum negatively impacts cellular metabolism, outer membrane stability, and symbiosis. J Bacteriol194:768–777 [CrossRef][PubMed]
    [Google Scholar]
  42. Vanderlinde E. M., Muszynski A., Harrison J. J., Koval S. F., Foreman D. L., Ceri H., Kannenberg E. L., Carlson R. W., Yost C. K.. 2009; Rhizobium leguminosarum biovar viciae 3841, deficient in 27-hydroxyoctacosanoate-modified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility. Microbiology155:3055–3069 [CrossRef][PubMed]
    [Google Scholar]
  43. Vanderlinde E. M., Harrison J. J., Muszyński A., Carlson R. W., Turner R. J., Yost C. K.. 2010; Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol Ecol71:327–340 [CrossRef][PubMed]
    [Google Scholar]
  44. Vanderlinde E. M., Magnus S. A., Tambalo D. D., Koval S. F., Yost C. K.. 2011; Mutation of a broadly conserved operon (RL3499-RL3502) from Rhizobium leguminosarum biovar viciae causes defects in cell morphology and envelope integrity. J Bacteriol193:2684–2694 [CrossRef][PubMed]
    [Google Scholar]
  45. Vincent J. M.. 1970; A Manual for the Practical Study of Root-Nodule Bacteria, IBP Handb. 15 Oxford: Blackwell;
    [Google Scholar]
  46. Wells D. H., Long S. R.. 2003; Mutations in rpoBC suppress the defects of a Sinorhizobium meliloti relA mutant. J Bacteriol185:5602–5610 [CrossRef][PubMed]
    [Google Scholar]
  47. Whelan K. F., Sherburne R. K., Taylor D. E.. 1997; Characterization of a region of the IncHI2 plasmid R478 which protects Escherichia coli from toxic effects specified by components of the tellurite, phage, and colicin resistance cluster. J Bacteriol179:63–71[PubMed]
    [Google Scholar]
  48. Whittaker C. A., Hynes R. O.. 2002; Distribution and evolution of von Willebrand/integrin A domains: widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell13:3369–3387[CrossRef]
    [Google Scholar]
  49. Wong K. S., Houry W. A.. 2012; Novel structural and functional insights into the MoxR family of AAA+ ATPases. J Struct Biol179:211–221 [CrossRef][PubMed]
    [Google Scholar]
  50. Wong K. S., Snider J. D., Graham C., Greenblatt J. F., Emili A., Babu M., Houry W. A.. 2014; The MoxR ATPase RavA and its cofactor ViaA interact with the NADH:ubiquinone oxidoreductase I in Escherichia coli . PLoS ONE9:e85529 [CrossRef][PubMed]
    [Google Scholar]
  51. Yost C. K., Del Bel K. L., Quandt J., Hynes M. F.. 2004; Rhizobium leguminosarum methyl-accepting chemotaxis protein genes are down-regulated in the pea nodule. Arch Microbiol182:505–513 [CrossRef][PubMed]
    [Google Scholar]
  52. Young J. P., Crossman L. C., Johnston A. W., Thomson N. R., Ghazoui Z. F., Hull K. H., Wexler M., Curson A. R., Todd J. D.. & other authors ( 2006; The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol7:R34 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082420-0
Loading
/content/journal/micro/10.1099/mic.0.082420-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error