1887

Abstract

is a prominent human pathogen and is known to form L-forms and during infection. However, the conditions of L-form formation are not optimal and the mechanisms of L-form formation in this organism are unknown. Here, we optimized the conditions of unstable L-form formation, constructed a transposon mutant library and screened for mutants defective in unstable L-form formation. Our results revealed that 20 % sucrose, 3.5 % sodium chloride, 750–1000 U penicillin and 33 °C were optimal conditions for L-form formation. Stationary phase cultures of formed L-forms better than exponential phase cultures. The L-form colonies showed typical ‘fried-egg’ morphology and the cells had deficient cell wall, showed morphological diversity, and stained Gram-negative. The mutant library screens identified 15 mutants deficient in L-form formation and sequencing analysis identified mutations in eight genes and three intergenic regions. Real-time PCR analysis indicated that, with the exception of , seven genes including , , , , , and were preferentially expressed in L-forms as compared with normal cell-walled form (<0.05). The identified genes involved in L-form growth mapped in the pathways for energy production, iron homeostasis, transporters, DNA repair, membrane biogenesis, and biosynthesis. Our findings shed new insight into the molecular basis of unstable L-form formation and may have implications for development of novel drugs targeting L-forms for improved treatment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082354-0
2015-01-01
2020-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/57.html?itemId=/content/journal/micro/10.1099/mic.0.082354-0&mimeType=html&fmt=ahah

References

  1. Allan E. J., Hoischen C., Gumpert J.. 2009; Bacterial L-forms. Adv Appl Microbiol68:1–39 [CrossRef][PubMed]
    [Google Scholar]
  2. Bae T., Glass E. M., Schneewind O., Missiakas D.. 2008; Generating a collection of insertion mutations in the Staphylococcus aureus genome using Bursa aurealis . Methods Mol Biol416:103–116 [CrossRef][PubMed]
    [Google Scholar]
  3. Baird R. M., Lee W. H.. 1995; Media used in the detection and enumeration of Staphylococcus aureus . Int J Food Microbiol26:15–24 [CrossRef][PubMed]
    [Google Scholar]
  4. Banville R. R.. 1964; Factors affecting growth of Staphylococcus aureus L forms on semidefined medium. J Bacteriol87:1192–1197[PubMed]
    [Google Scholar]
  5. Biswas B. B., Basu P. S., Pal M. K.. 1970; Gram staining and its molecular mechanism. Int Rev Cytol29:1–27 [CrossRef][PubMed]
    [Google Scholar]
  6. Burmeister H. R., Hesseltine C. W.. 1968; Induction and propagation of a Bacillus subtilis L form in natural and synthetic media. J Bacteriol95:1857–1861[PubMed]
    [Google Scholar]
  7. Cabeen M. T., Jacobs-Wagner C.. 2005; Bacterial cell shape. Nat Rev Microbiol3:601–610 [CrossRef][PubMed]
    [Google Scholar]
  8. Dell’Era S., Buchrieser C., Couvé E., Schnell B., Briers Y., Schuppler M., Loessner M. J.. 2009; Listeria monocytogenes L-forms respond to cell wall deficiency by modifying gene expression and the mode of division. Mol Microbiol73:306–322 [CrossRef][PubMed]
    [Google Scholar]
  9. Devine K. M.. 2012; Bacterial L-forms on tap: an improved methodology to generate Bacillus subtilis L-forms heralds a new era of research. Mol Microbiol83:10–13 [CrossRef][PubMed]
    [Google Scholar]
  10. Dienes L., Weinberger H. J.. 1951; The L forms of bacteria. Bacteriol Rev15:245–288[PubMed]
    [Google Scholar]
  11. Domingue G. J.. 2010; Demystifying pleomorphic forms in persistence and expression of disease: are they bacteria, and is peptidoglycan the solution?. Discov Med10:234–246[PubMed]
    [Google Scholar]
  12. Domingue G. J. Sr, Woody H. B.. 1997; Bacterial persistence and expression of disease. Clin Microbiol Rev10:320–344[PubMed]
    [Google Scholar]
  13. Domínguez-Cuevas P., Mercier R., Leaver M., Kawai Y., Errington J.. 2012; The rod to L-form transition of Bacillus subtilis is limited by a requirement for the protoplast to escape from the cell wall sacculus. Mol Microbiol83:52–66 [CrossRef][PubMed]
    [Google Scholar]
  14. Fuller E., Elmer C., Nattress F., Ellis R., Horne G., Cook P., Fawcett T.. 2005; β-lactam resistance in Staphylococcus aureus cells that do not require a cell wall for integrity. Antimicrob Agents Chemother49:5075–5080 [CrossRef][PubMed]
    [Google Scholar]
  15. Glover W. A., Yang Y., Zhang Y.. 2009; Insights into the molecular basis of L-form formation and survival in Escherichia coli . PLoS ONE4:e7316 [CrossRef][PubMed]
    [Google Scholar]
  16. Han J., He L., Shi W., Xu X., Wang S., Zhang S., Zhang Y.. 2014; Glycerol uptake is important for L-form formation and persistence in Staphylococcus aureus . PLoS One9:e108325[CrossRef]
    [Google Scholar]
  17. Hoischen C., Gura K., Luge C., Gumpert J.. 1997; Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L form. J Bacteriol179:3430–3436[PubMed]
    [Google Scholar]
  18. Hubert E. G., Potter C. S., Hensley T. J., Cohen M., Kalmanson G. M., Guze L. B.. 1971; L-forms of Pseudomonas aeruginosa . Infect Immun4:60–72[PubMed]
    [Google Scholar]
  19. Jordan S., Hutchings M. I., Mascher T.. 2008; Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev32:107–146 [CrossRef][PubMed]
    [Google Scholar]
  20. Joseleau-Petit D., Liébart J. C., Ayala J. A., D’Ari R.. 2007; Unstable Escherichia coli L forms revisited: growth requires peptidoglycan synthesis. J Bacteriol189:6512–6520 [CrossRef][PubMed]
    [Google Scholar]
  21. Kato Y., Hirachi Y., Toda Y., Takemasa N., Kotani S.. 1986; Effect of the composition of reversion medium on change of Staphylococcus aureus lysostaphin protoplasts to coccal forms and L-forms. Biken J29:39–44[PubMed]
    [Google Scholar]
  22. Keren I., Kaldalu N., Spoering A., Wang Y., Lewis K.. 2004; Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett230:13–18 [CrossRef][PubMed]
    [Google Scholar]
  23. Klieneberger E.. 1935; The natural occurrence of pleuropneumonia-like organisms in apparent symbiosis with Streptobacillus moniliformis and other bacteria. J Pathol Bacteriol40:93–105 [CrossRef]
    [Google Scholar]
  24. Kraft L., Sprenger G. A., Lindqvist Y.. 2002; Conformational changes during the catalytic cycle of gluconate kinase as revealed by X-ray crystallography. J Mol Biol318:1057–1069 [CrossRef][PubMed]
    [Google Scholar]
  25. Leaver M., Domínguez-Cuevas P., Coxhead J. M., Daniel R. A., Errington J.. 2009; Life without a wall or division machine in Bacillus subtilis . Nature457:849–853 [CrossRef][PubMed]
    [Google Scholar]
  26. Lechner S., Lewis K., Bertram R.. 2012; Staphylococcus aureus persisters tolerant to bactericidal antibiotics. J Mol Microbiol Biotechnol22:235–244 [CrossRef][PubMed]
    [Google Scholar]
  27. Luong T. T., Dunman P. M., Murphy E., Projan S. J., Lee C. Y.. 2006; Transcription profiling of the mgrA regulon in Staphylococcus aureus . J Bacteriol188:1899–1910 [CrossRef][PubMed]
    [Google Scholar]
  28. Makemson J. C., Darwish R. Z.. 1972; Calcium requirement and magnesium stimulation of Escherichia coli L-form induction. Infect Immun6:880–882[PubMed]
    [Google Scholar]
  29. Michailova L., Kussovsky V., Radoucheva T., Jordanova M., Markova N.. 2007; Persistence of Staphylococcus aureus L-form during experimental lung infection in rats. FEMS Microbiol Lett268:88–97 [CrossRef][PubMed]
    [Google Scholar]
  30. Mitchell P., Moyle J.. 1957; Autolytic release and osmotic properties of protoplasts from Staphylococcus aureus . J Gen Microbiol16:184–194 [CrossRef][PubMed]
    [Google Scholar]
  31. Montgomerie J. Z., Kalmanson G. M., Guze L. B.. 1967; Effect of osmotic stabilizer on protoplasts and bacterial forms of Streptococcus faecalis . J Lab Clin Med70:539–553[PubMed]
    [Google Scholar]
  32. Montgomerie J. Z., Kalmanson G. M., Hubert E. G., Guze L. B.. 1972; Osmotic stability and sodium and potassium content of L-forms of Streptococcus faecalis . J Bacteriol110:624–627[PubMed]
    [Google Scholar]
  33. Owens W. E.. 1987; Isolation of Staphylococcus aureus L forms from experimentally induced bovine mastitis. J Clin Microbiol25:1956–1961[PubMed]
    [Google Scholar]
  34. Owens W. E., Nickerson S. C.. 1989; Morphologic study of Staphylococcus aureus L-form, reverting, and intermediate colonies in situ. J Clin Microbiol27:1382–1386[PubMed]
    [Google Scholar]
  35. Sears P. M., Fettinger M., Marsh-Salin J.. 1987; Isolation of L-form variants after antibiotic treatment in Staphylococcus aureus bovine mastitis. J Am Vet Med Assoc191:681–684[PubMed]
    [Google Scholar]
  36. Shingaki R., Kasahara Y., Iwano M., Kuwano M., Takatsuka T., Inoue T., Kokeguchi S., Fukui K.. 2003; Induction of L-form-like cell shape change of Bacillus subtilis under microculture conditions. Microbiology149:2501–2511 [CrossRef][PubMed]
    [Google Scholar]
  37. Siddiqui R. A., Hoischen C., Holst O., Heinze I., Schlott B., Gumpert J., Diekmann S., Grosse F., Platzer M.. 2006; The analysis of cell division and cell wall synthesis genes reveals mutationally inactivated ftsQ and mraY in a protoplast-type L-form of Escherichia coli . FEMS Microbiol Lett258:305–311 [CrossRef][PubMed]
    [Google Scholar]
  38. Stapels D. A., Ramyar K. X., Bischoff M., von Köckritz-Blickwede M., Milder F. J., Ruyken M., Eisenbeis J., McWhorter W. J., Herrmann M.. & other authors ( 2014; Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors. Proc Natl Acad Sci U S A111:13187–13192 [CrossRef][PubMed]
    [Google Scholar]
  39. Tanimoto A., Kitagaki Y., Hiura M., Fujiwara H., Iijima K., Ikawa S.. 1995; [Methicillin-resistant Staphylococcus aureus forming the fried egg appearance colonies isolated from a patient with septicemia]. Rinsho Byori43:1061–1065[PubMed]
    [Google Scholar]
  40. Williams R. E.. 1963; L forms of Staphylococcus aureus . J Gen Microbiol33:325–334 [CrossRef][PubMed]
    [Google Scholar]
  41. Yao J., Rock C. O.. 2013; Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta1831:495–502 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhang Y.. 2014; Persisters, persistent infections and the Yin–Yang model. Emerging Microbes Infections3:e3 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082354-0
Loading
/content/journal/micro/10.1099/mic.0.082354-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error