1887

Abstract

Leukotoxin (LtxA; Leukothera), a protein toxin secreted by the oral bacterium , specifically kills white blood cells (WBCs). LtxA binds to the receptor known as lymphocyte function associated antigen-1 (LFA-1), a β integrin expressed only on the surface of WBCs. LtxA is being studied as a virulence factor that helps evade host defences and as a potential therapeutic agent for the treatment of WBC diseases. LtxA-mediated cell death in monocytes involves both caspases and lysosomes; however, the signalling proteins that regulate and mediate cell death remain largely unknown. We used a 2D-gel proteomics approach to analyse the global protein expression changes that occur in response to LtxA. This approach identified the protein cofilin, which underwent dephosphorylation upon LtxA treatment. Cofilin is a ubiquitous actin-binding protein known to regulate actin dynamics and is regulated by LIM kinase (LIMK)-mediated phosphorylation. LtxA-mediated cofilin dephosphorylation was dependent on LFA-1 and cofilin dephosphorylation did not occur when LFA-1 bound to its natural ligand, ICAM-1. Treatment of cells with an inhibitor of LIMK (LIMKi) also led to cofilin dephosphorylation and enhanced killing by LtxA. This enhanced sensitivity to LtxA coincided with an increase in lysosomal disruption, and an increase in LFA-1 surface expression and clustering. Both LIMKi and LtxA treatment also induced actin depolymerization, which could play a role in trafficking and surface distribution of LFA-1. We propose a model in which LtxA-mediated cofilin dephosphorylation leads to actin depolymerization, LFA-1 overexpression/clustering, and enhanced lysosomal-mediated cell death.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082347-0
2014-11-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2443.html?itemId=/content/journal/micro/10.1099/mic.0.082347-0&mimeType=html&fmt=ahah

References

  1. Arber S., Barbayannis F. A., Hanser H., Schneider C., Stanyon C. A., Bernard O., Caroni P.. ( 1998;). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature393:805–809 [CrossRef][PubMed]
    [Google Scholar]
  2. Bamburg J. R.. ( 1999;). Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol15:185–230 [CrossRef][PubMed]
    [Google Scholar]
  3. Bamburg J. R., Bernstein B. W., Davis R. C., Flynn K. C., Goldsbury C., Jensen J. R., Maloney M. T., Marsden I. T., Minamide L. S.. & other authors ( 2010;). ADF/cofilin-actin rods in neurodegenerative diseases. Curr Alzheimer Res7:241–250 [CrossRef][PubMed]
    [Google Scholar]
  4. Bazzoni G., Hemler M. E.. ( 1998;). Are changes in integrin affinity and conformation overemphasized?. Trends Biochem Sci23:30–34 [CrossRef][PubMed]
    [Google Scholar]
  5. Bechter O. E., Eisterer W., Dirnhofer S., Pall G., Kühr T., Stauder R., Thaler J.. ( 1999;). Expression of LFA-1 identifies different prognostic subgroups in patients with advanced follicle center lymphoma (FCL). Leuk Res23:483–488 [CrossRef][PubMed]
    [Google Scholar]
  6. Calderwood D. A., Shattil S. J., Ginsberg M. H.. ( 2000;). Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem275:22607–22610 [CrossRef][PubMed]
    [Google Scholar]
  7. Cambi A., Joosten B., Koopman M., de Lange F., Beeren I., Torensma R., Fransen J. A., Garcia-Parajó M., van Leeuwen F. N., Figdor C. G.. ( 2006;). Organization of the integrin LFA-1 in nanoclusters regulates its activity. Mol Biol Cell17:4270–4281 [CrossRef][PubMed]
    [Google Scholar]
  8. Carman C. V., Springer T. A.. ( 2003;). Integrin avidity regulation: are changes in affinity and conformation underemphasized?. Curr Opin Cell Biol15:547–556 [CrossRef][PubMed]
    [Google Scholar]
  9. Diaz R., Ghofaily L. A., Patel J., Balashova N. V., Freitas A. C., Labib I., Kachlany S. C.. ( 2006;). Characterization of leukotoxin from a clinical strain of Actinobacillus actinomycetemcomitans . Microb Pathog40:48–55 [CrossRef][PubMed]
    [Google Scholar]
  10. DiFranco K. M., Gupta A., Galusha L. E., Perez J., Nguyen T. V., Fineza C. D., Kachlany S. C.. ( 2012;). Leukotoxin (Leukothera®) targets active leukocyte function antigen-1 (LFA-1) protein and triggers a lysosomal mediated cell death pathway. J Biol Chem287:17618–17627 [CrossRef][PubMed]
    [Google Scholar]
  11. Dileepan T., Kachlany S. C., Balashova N. V., Patel J., Maheswaran S. K.. ( 2007;). Human CD18 is the functional receptor for Aggregatibacter actinomycetemcomitans leukotoxin. Infect Immun75:4851–4856 [CrossRef][PubMed]
    [Google Scholar]
  12. Evans R., Patzak I., Svensson L., De Filippo K., Jones K., McDowall A., Hogg N.. ( 2009;). Integrins in immunity. J Cell Sci122:215–225 [CrossRef][PubMed]
    [Google Scholar]
  13. Fine D. H., Markowitz K., Furgang D., Fairlie K., Ferrandiz J., Nasri C., McKiernan M., Gunsolley J.. ( 2007;). Aggregatibacter actinomycetemcomitans and its relationship to initiation of localized aggressive periodontitis: longitudinal cohort study of initially healthy adolescents. J Clin Microbiol45:3859–3869 [CrossRef][PubMed]
    [Google Scholar]
  14. Fong K. P., Pacheco C. M., Otis L. L., Baranwal S., Kieba I. R., Harrison G., Hersh E. V., Boesze-Battaglia K., Lally E. T.. ( 2006;). Actinobacillus actinomycetemcomitans leukotoxin requires lipid microdomains for target cell cytotoxicity. Cell Microbiol8:1753–1767 [CrossRef][PubMed]
    [Google Scholar]
  15. Gupta A., Le A., Belinka B. A., Kachlany S. C.. ( 2011;). In vitro synergism between LFA-1 targeting leukotoxin (Leukothera™) and standard chemotherapeutic agents in leukemia cells. Leuk Res35:1498–1505 [CrossRef][PubMed]
    [Google Scholar]
  16. Hayden S. M., Miller P. S., Brauweiler A., Bamburg J. R.. ( 1993;). Analysis of the interactions of actin depolymerizing factor with G- and F-actin. Biochemistry32:9994–10004 [CrossRef][PubMed]
    [Google Scholar]
  17. Hioe C. E., Tuen M., Vasiliver-Shamis G., Alvarez Y., Prins K. C., Banerjee S., Nádas A., Cho M. W., Dustin M. L., Kachlany S. C.. ( 2011;). HIV envelope gp120 activates LFA-1 on CD4 T-lymphocytes and increases cell susceptibility to LFA-1-targeting leukotoxin (LtxA). PLoS ONE6:e23202 [CrossRef][PubMed]
    [Google Scholar]
  18. Hogg N., Smith A., McDowall A., Giles K., Stanley P., Laschinger M., Henderson R.. ( 2004;). How T cells use LFA-1 to attach and migrate. Immunol Lett92:51–54 [CrossRef][PubMed]
    [Google Scholar]
  19. Johansson A., Claesson R., Hänström L., Sandström G., Kalfas S.. ( 2000;). Polymorphonuclear leukocyte degranulation induced by leukotoxin from Actinobacillus actinomycetemcomitans . J Periodontal Res35:85–92 [CrossRef][PubMed]
    [Google Scholar]
  20. Kachlany S. C.. ( 2010;). Aggregatibacter actinomycetemcomitans leukotoxin: from threat to therapy. J Dent Res89:561–570 [CrossRef][PubMed]
    [Google Scholar]
  21. Kachlany S. C., Schwartz A. B., Balashova N. V., Hioe C. E., Tuen M., Le A., Kaur M., Mei Y., Rao J.. ( 2010;). Anti-leukemia activity of a bacterial toxin with natural specificity for LFA-1 on white blood cells. Leuk Res34:777–785 [CrossRef][PubMed]
    [Google Scholar]
  22. Kelk P., Abd H., Claesson R., Sandström G., Sjöstedt A., Johansson A.. ( 2011;). Cellular and molecular response of human macrophages exposed to Aggregatibacter actinomycetemcomitans leukotoxin. Cell Death Dis2:e126 [CrossRef][PubMed]
    [Google Scholar]
  23. Kinashi T.. ( 2005;). Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev Immunol5:546–559 [CrossRef][PubMed]
    [Google Scholar]
  24. Korostoff J., Wang J. F., Kieba I., Miller M., Shenker B. J., Lally E. T.. ( 1998;). Actinobacillus actinomycetemcomitans leukotoxin induces apoptosis in HL-60 cells. Infect Immun66:4474–4483[PubMed]
    [Google Scholar]
  25. Korostoff J., Yamaguchi N., Miller M., Kieba I., Lally E. T.. ( 2000;). Perturbation of mitochondrial structure and function plays a central role in Actinobacillus actinomycetemcomitans leukotoxin-induced apoptosis. Microb Pathog29:267–278 [CrossRef][PubMed]
    [Google Scholar]
  26. Lally E. T., Kieba I. R., Sato A., Green C. L., Rosenbloom J., Korostoff J., Wang J. F., Shenker B. J., Ortlepp S.. & other authors ( 1997;). RTX toxins recognize a β2 integrin on the surface of human target cells. J Biol Chem272:30463–30469 [CrossRef][PubMed]
    [Google Scholar]
  27. Lally E. T., Hill R. B., Kieba I. R., Korostoff J.. ( 1999;). The interaction between RTX toxins and target cells. Trends Microbiol7:356–361 [CrossRef][PubMed]
    [Google Scholar]
  28. Lappalainen P., Drubin D. G.. ( 1997;). Cofilin promotes rapid actin filament turnover in vivo . Nature388:78–82 [CrossRef][PubMed]
    [Google Scholar]
  29. Lee C. K., Park H. J., So H. H., Kim H. J., Lee K. S., Choi W. S., Lee H. M., Won K. J., Yoon T. J.. & other authors ( 2006;). Proteomic profiling and identification of cofilin responding to oxidative stress in vascular smooth muscle. Proteomics6:6455–6475 [CrossRef][PubMed]
    [Google Scholar]
  30. Lee C. W., Han J., Bamburg J. R., Han L., Lynn R., Zheng J. Q.. ( 2009;). Regulation of acetylcholine receptor clustering by ADF/cofilin-directed vesicular trafficking. Nat Neurosci12:848–856 [CrossRef][PubMed]
    [Google Scholar]
  31. Mannherz H. G., Gonsior S. M., Gremm D., Wu X., Pope B. J., Weeds A. G.. ( 2005;). Activated cofilin colocalises with Arp2/3 complex in apoptotic blebs during programmed cell death. Eur J Cell Biol84:503–515 [CrossRef][PubMed]
    [Google Scholar]
  32. Margadant C., Monsuur H. N., Norman J. C., Sonnenberg A.. ( 2011;). Mechanisms of integrin activation and trafficking. Curr Opin Cell Biol23:607–614 [CrossRef][PubMed]
    [Google Scholar]
  33. Mengarelli A., Zarcone D., Caruso R., Tenca C., Rana I., Pinto R. M., Grossi C. E., De Rossi G.. ( 2001;). Adhesion molecule expression, clinical features and therapy outcome in childhood acute lymphoblastic leukemia. Leuk Lymphoma40:625–630 [CrossRef][PubMed]
    [Google Scholar]
  34. Moon A., Drubin D. G.. ( 1995;). The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol Biol Cell6:1423–1431 [CrossRef][PubMed]
    [Google Scholar]
  35. Newman M. G., Socransky S. S., Savitt E. D., Propas D. A., Crawford A.. ( 1976;). Studies of the microbiology of periodontosis. J Periodontol47:373–379 [CrossRef][PubMed]
    [Google Scholar]
  36. Nishimura Y., Yoshioka K., Bernard O., Bereczky B., Itoh K.. ( 2006;). A role of LIM kinase 1/cofilin pathway in regulating endocytic trafficking of EGF receptor in human breast cancer cells. Histochem Cell Biol126:627–638 [CrossRef][PubMed]
    [Google Scholar]
  37. Pinto A., Carbone A., Gloghini A., Marotta G., Volpe R., Zagonel V.. ( 1993;). Differential expression of cell adhesion molecules in B-zone small lymphocytic lymphoma and other well-differentiated lymphocytic disorders. Cancer72:894–904 [CrossRef][PubMed]
    [Google Scholar]
  38. Porter J. C., Bracke M., Smith A., Davies D., Hogg N.. ( 2002;). Signaling through integrin LFA-1 leads to filamentous actin polymerization and remodeling, resulting in enhanced T cell adhesion. J Immunol168:6330–6335 [CrossRef][PubMed]
    [Google Scholar]
  39. Reinholdt J., Poulsen K., Brinkmann C. R., Hoffmann S. V., Stapulionis R., Enghild J. J., Jensen U. B., Boesen T., Vorup-Jensen T.. ( 2013;). Monodisperse and LPS-free Aggregatibacter actinomycetemcomitans leukotoxin: interactions with human β2 integrins and erythrocytes. Biochim Biophys Acta1834:546–558 [CrossRef][PubMed]
    [Google Scholar]
  40. Reuss-Borst M. A., Klein G., Waller H. D., Müller C. A.. ( 1995;). Differential expression of adhesion molecules in acute leukemia. Leukemia9:869–874[PubMed]
    [Google Scholar]
  41. Ross-Macdonald P., de Silva H., Guo Q., Xiao H., Hung C. Y., Penhallow B., Markwalder J., He L., Attar R. M.. & other authors ( 2008;). Identification of a nonkinase target mediating cytotoxicity of novel kinase inhibitors. Mol Cancer Ther7:3490–3498 [CrossRef][PubMed]
    [Google Scholar]
  42. Scott R. W., Hooper S., Crighton D., Li A., König I., Munro J., Trivier E., Wickman G., Morin P.. & other authors ( 2010;). LIM kinases are required for invasive path generation by tumor and tumor-associated stromal cells. J Cell Biol191:169–185 [CrossRef][PubMed]
    [Google Scholar]
  43. Slots J., Ting M.. ( 1999;). Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment. Periodontol 200020:82–121 [CrossRef][PubMed]
    [Google Scholar]
  44. Stenderup K., Rosada C., Dam T. N., Salerno E., Belinka B. A., Kachlany S. C.. ( 2011;). Resolution of psoriasis by a leukocyte-targeting bacterial protein in a humanized mouse model. J Invest Dermatol131:2033–2039 [CrossRef][PubMed]
    [Google Scholar]
  45. Taichman N. S., Iwase M., Lally E. T., Shattil S. J., Cunningham M. E., Korchak H. M.. ( 1991;). Early changes in cytosolic calcium and membrane potential induced by Actinobacillus actinomycetemcomitans leukotoxin in susceptible and resistant target cells. J Immunol147:3587–3594[PubMed]
    [Google Scholar]
  46. van Kooyk Y., Weder P., Heije K., Figdor C. G.. ( 1994;). Extracellular Ca2+ modulates leukocyte function-associated antigen-1 cell surface distribution on T lymphocytes and consequently affects cell adhesion. J Cell Biol124:1061–1070 [CrossRef][PubMed]
    [Google Scholar]
  47. Yamaguchi N., Kieba I. R., Korostoff J., Howard P. S., Shenker B. J., Lally E. T.. ( 2001;). Maintenance of oxidative phosphorylation protects cells from Actinobacillus actinomycetemcomitans leukotoxin-induced apoptosis. Cell Microbiol3:811–823 [CrossRef][PubMed]
    [Google Scholar]
  48. Yang C. W., Li C., Jung J. Y., Shin S. J., Choi B. S., Lim S. W., Sun B. K., Kim Y. S., Kim J.. & other authors ( 2003;). Preconditioning with erythropoietin protects against subsequent ischemia-reperfusion injury in rat kidney. FASEB J17:1754–1755[PubMed][CrossRef]
    [Google Scholar]
  49. Yauch R. L., Felsenfeld D. P., Kraeft S. K., Chen L. B., Sheetz M. P., Hemler M. E.. ( 1997;). Mutational evidence for control of cell adhesion through integrin diffusion/clustering, independent of ligand binding. J Exp Med186:1347–1355 [CrossRef][PubMed]
    [Google Scholar]
  50. Zambon J. J.. ( 1985;). Actinobacillus actinomycetemcomitans in human periodontal disease. J Clin Periodontol12:1–20 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082347-0
Loading
/content/journal/micro/10.1099/mic.0.082347-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error