1887

Abstract

LdrP (TT_P0055) (LitR-dependent regulatory protein) is one of the four cAMP receptor protein (CRP)/FNR family transcriptional regulators retained by the extremely thermophilic bacterium . Previously, we reported that LdrP served as a positive regulator for the light-induced transcription of , a carotenoid biosynthesis gene encoded on the megaplasmid of this organism. Here, we showed that LdrP also functions as an activator of the expression of genes clustered around the gene under the control of LitR, an adenosyl B-bound light-sensitive regulator. Transcriptome analysis revealed the existence of 19 LitR-dependent genes on the megaplasmid. S1 nuclease protection assay confirmed that the promoters preceding TT_P0044 (P), TT_P0049 (P) and TT_P0070 (P) were activated upon illumination in the WT strain. An mutant lost the ability to activate P, P and P, whilst disruption of resulted in constitutive transcription from these promoters irrespective of illumination, indicating that these genes were photo-dependently regulated by LdrP and LitR. An transcription experiment demonstrated that LdrP directly activated mRNA synthesis from P and P by the RNA polymerase holocomplex. The present evidence indicated that LdrP was the positive regulator essential for the transcription of the light-inducible cluster encoded on the megaplasmid.

Funding
This study was supported by the:
  • Grant-in-Aid for the Encouragement of Young Scientists (Award 23780093)
  • Scientific Research (C) (Award 22510208)
  • High-Tech Research Center Project of the Ministry of Education, Culture, Sports, Science and Technology, Japan
  • Noda Institute for Scientific Research
  • Foundation NAGASE Science Technology Development
  • Charitable Trust Araki Medical and Biochemical Research Memorial Fund
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082263-0
2014-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2650.html?itemId=/content/journal/micro/10.1099/mic.0.082263-0&mimeType=html&fmt=ahah

References

  1. Agari Y., Kashihara A., Yokoyama S., Kuramitsu S., Shinkai A. ( 2008). Global gene expression mediated by Thermus thermophilus SdrP, a CRP/FNR family transcriptional regulator. Mol Microbiol 70:60–75 [View Article][PubMed]
    [Google Scholar]
  2. Agari Y., Kuramitsu S., Shinkai A. ( 2012). X-ray crystal structure of TTHB099, a CRP/FNR superfamily transcriptional regulator from Thermus thermophilus HB8, reveals a DNA-binding protein with no required allosteric effector molecule. Proteins 80:1490–1494 [View Article][PubMed]
    [Google Scholar]
  3. Brüggemann H., Chen C. ( 2006). Comparative genomics of Thermus thermophilus: plasticity of the megaplasmid and its contribution to a thermophilic lifestyle. J Biotechnol 124:654–661 [View Article][PubMed]
    [Google Scholar]
  4. Busby S., Ebright R. H. ( 1999). Transcription activation by catabolite activator protein (CAP). J Mol Biol 293:199–213 [View Article][PubMed]
    [Google Scholar]
  5. Díez A. I., Ortiz-Guerrero J. M., Ortega A., Elías-Arnanz M., Padmanabhan S., García de la Torre J. ( 2013). Analytical ultracentrifugation studies of oligomerization and DNA-binding of TtCarH, a Thermus thermophilus coenzyme B12-based photosensory regulator. Eur Biophys J 42:463–476 [View Article][PubMed]
    [Google Scholar]
  6. Ebright R. H., Ebright Y. W., Gunasekera A. ( 1989). Consensus DNA site for the Escherichia coli catabolite gene activator protein (CAP): CAP exhibits a 450-fold higher affinity for the consensus DNA site than for the E. coli lac DNA site. Nucleic Acids Res 17:10295–10305 [View Article][PubMed]
    [Google Scholar]
  7. Edge R., McGarvey D. J., Truscott T. G. ( 1997). The carotenoids as anti-oxidants – a review. J Photochem Photobiol B 41:189–200 [View Article][PubMed]
    [Google Scholar]
  8. Glaeser J., Nuss A. M., Berghoff B. A., Klug G. ( 2011). Singlet oxygen stress in microorganisms. Adv Microb Physiol 58:141–173 [View Article][PubMed]
    [Google Scholar]
  9. Hashimoto Y., Yano T., Kuramitsu S., Kagamiyama H. ( 2001). Disruption of Thermus thermophilus genes by homologous recombination using a thermostable kanamycin-resistant marker. FEBS Lett 506:231–234 [View Article][PubMed]
    [Google Scholar]
  10. Hayes J. D., McLellan L. I. ( 1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31:273–300 [View Article][PubMed]
    [Google Scholar]
  11. Hendrischk A. K., Braatsch S., Glaeser J., Klug G. ( 2007). The phrA gene of Rhodobacter sphaeroides encodes a photolyase and is regulated by singlet oxygen and peroxide in a σE-dependent manner. Microbiology 153:1842–1851 [View Article][PubMed]
    [Google Scholar]
  12. Henne A., Brüggemann H., Raasch C., Wiezer A., Hartsch T., Liesegang H., Johann A., Lienard T., Gohl O. & other authors ( 2004). The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22:547–553 [View Article][PubMed]
    [Google Scholar]
  13. Hoseki J., Yano T., Koyama Y., Kuramitsu S., Kagamiyama H. ( 1999). Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem 126:951–956 [View Article][PubMed]
    [Google Scholar]
  14. Hoshino T., Kosuge T., Hidaka Y., Tabata K., Nakahara T. ( 1994). Molecular cloning and sequence analysis of the proC gene encoding delta 1-pyrroline-5-carboxylate reductase from an extremely thermophilic eubacterium Thermus thermophilus. Biochem Biophys Res Commun 199:410–417 [View Article][PubMed]
    [Google Scholar]
  15. Koyama Y., Hoshino T., Tomizuka N., Furukawa K. ( 1986). Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp.. J Bacteriol 166:338–340[PubMed]
    [Google Scholar]
  16. Lawson C. L., Swigon D., Murakami K. S., Darst S. A., Berman H. M., Ebright R. H. ( 2004). Catabolite activator protein: DNA binding and transcription activation. Curr Opin Struct Biol 14:10–20 [View Article][PubMed]
    [Google Scholar]
  17. Maniatis T., Fritsch E. F., Sambrook J. ( 1982). Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Moll I., Grill S., Gualerzi C. O., Bläsi U. ( 2002). Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control. Mol Microbiol 43:239–246 [View Article][PubMed]
    [Google Scholar]
  19. Nishiyama M., Kobashi N., Tanaka K., Takahashi H., Tanokura M. ( 1999). Cloning and characterization in Escherichia coli of the gene encoding the principal sigma factor of an extreme thermophile, Thermus thermophilus. FEMS Microbiol Lett 172:179–186 [View Article][PubMed]
    [Google Scholar]
  20. Ohtani N., Tomita M., Itaya M. ( 2012). The third plasmid pVV8 from Thermus thermophilus HB8: isolation, characterization, and sequence determination. Extremophiles 16:237–244 [View Article][PubMed]
    [Google Scholar]
  21. Ortiz-Guerrero J. M., Polanco M. C., Murillo F. J., Padmanabhan S., Elías-Arnanz M. ( 2011). Light-dependent gene regulation by a coenzyme B12-based photoreceptor. Proc Natl Acad Sci U S A 108:7565–7570 [View Article][PubMed]
    [Google Scholar]
  22. Oshima T. ( 1974). Comparative studies on biochemical properties of an extreme thermophile, Thermus thermophilus HB 8 (author’s transl). Seikagaku 46:887–907[PubMed]
    [Google Scholar]
  23. Pepper S. D., Saunders E. K., Edwards L. E., Wilson C. L., Miller C. J. ( 2007). The utility of MAS5 expression summary and detection call algorithms. BMC Bioinformatics 8:273 [View Article][PubMed]
    [Google Scholar]
  24. Pérez-Marín M. C., Padmanabhan S., Polanco M. C., Murillo F. J., Elías-Arnanz M. ( 2008). Vitamin B12 partners the CarH repressor to downregulate a photoinducible promoter in Myxococcus xanthus. Mol Microbiol 67:804–819 [View Article][PubMed]
    [Google Scholar]
  25. Sevostyanova A., Djordjevic M., Kuznedelov K., Naryshkina T., Gelfand M. S., Severinov K., Minakhin L. ( 2007). Temporal regulation of viral transcription during development of Thermus thermophilus bacteriophage phiYS40. J Mol Biol 366:420–435 [View Article][PubMed]
    [Google Scholar]
  26. Shinkai A., Kira S., Nakagawa N., Kashihara A., Kuramitsu S., Yokoyama S. ( 2007). Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8. J Bacteriol 189:3891–3901 [View Article][PubMed]
    [Google Scholar]
  27. Sikorski J., Tindall B. J., Lowry S., Lucas S., Nolan M., Copeland A., Glavina Del Rio T., Tice H., Cheng J. F. & other authors ( 2010). Complete genome sequence of Meiothermus silvanus type strain (VI-R2). Stand Genomic Sci 3:37–46 [View Article][PubMed]
    [Google Scholar]
  28. Sollner-Webb B., Reeder R. H. ( 1979). The nucleotide sequence of the initiation and termination sites for ribosomal RNA transcription in X. laevis. Cell 18:485–499 [View Article][PubMed]
    [Google Scholar]
  29. Storey J. D., Tibshirani R. ( 2003). Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445 [View Article][PubMed]
    [Google Scholar]
  30. Takano H., Obitsu S., Beppu T., Ueda K. ( 2005). Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol 187:1825–1832 [View Article][PubMed]
    [Google Scholar]
  31. Takano H., Asker D., Beppu T., Ueda K. ( 2006a). Genetic control for light-induced carotenoid production in non-phototrophic bacteria. J Ind Microbiol Biotechnol 33:88–93 [View Article][PubMed]
    [Google Scholar]
  32. Takano H., Beppu T., Ueda K. ( 2006b). The CarA/LitR-family transcriptional regulator: its possible role as a photosensor and wide distribution in non-phototrophic bacteria. Biosci Biotechnol Biochem 70:2320–2324 [View Article][PubMed]
    [Google Scholar]
  33. Takano H., Kondo M., Usui N., Usui T., Ohzeki H., Yamazaki R., Washioka M., Nakamura A., Hoshino T. & other authors ( 2011). Involvement of CarA/LitR and CRP/FNR family transcriptional regulators in light-induced carotenoid production in Thermus thermophilus. J Bacteriol 193:2451–2459 [View Article][PubMed]
    [Google Scholar]
  34. Takayama G., Kosuge T., Maseda H., Nakamura A., Hoshino T. ( 2004). Nucleotide sequence of the cryptic plasmid pTT8 from Thermus thermophilus HB8 and isolation and characterization of its high-copy-number mutant. Plasmid 51:227–237 [View Article][PubMed]
    [Google Scholar]
  35. Tindall B. J., Sikorski J., Lucas S., Goltsman E., Copeland A., Glavina Del Rio T., Nolan M., Tice H., Cheng J. F. & other authors ( 2010). Complete genome sequence of Meiothermus ruber type strain (21). Stand Genomic Sci 3:26–36 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082263-0
Loading
/content/journal/micro/10.1099/mic.0.082263-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error