adhesins: potential biomarkers as anti-tuberculosis therapeutic and diagnostic targets Free

Abstract

Adhesion to host cells is a precursor to host colonization and evasion of the host immune response. Conversely, it triggers the induction of the immune response, a process vital to the host’s defence against infection. Adhesins are microbial cell surface molecules or structures that mediate the attachment of the microbe to host cells and thus the host–pathogen interaction. They also play a crucial role in bacterial aggregation and biofilm formation. In this review, we discuss the role of adhesins in the pathogenesis of the aetiological agent of tuberculosis, . We also provide insight into the structure and characteristics of some of the characterized and putative adhesins. Finally, we examine the potential of adhesins as targets for the development of tuberculosis control strategies.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082206-0
2014-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1821.html?itemId=/content/journal/micro/10.1099/mic.0.082206-0&mimeType=html&fmt=ahah

References

  1. Abebe F., Holm-Hansen C., Wiker H. G., Bjune G. ( 2007). Progress in serodiagnosis of Mycobacterium tuberculosis infection. Scand J Immunol 66:176–191 [View Article][PubMed]
    [Google Scholar]
  2. Algood H. M., Chan J., Flynn J. L. ( 2003). Chemokines and tuberculosis. Cytokine Growth Factor Rev 14:467–477 [View Article][PubMed]
    [Google Scholar]
  3. Almeida Da Silva P. E., Palomino J. C. ( 2011). Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66:1417–1430 [View Article][PubMed]
    [Google Scholar]
  4. Alteri C. J. ( 2005). Novel pili of Mycobacterium tuberculosis PhD thesis; The University of Arizona:
    [Google Scholar]
  5. Alteri C. J., Xicohténcatl-Cortes J., Hess S., Caballero-Olín G., Girón J. A., Friedman R. L. ( 2007). Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci U S A 104:5145–5150 [View Article][PubMed]
    [Google Scholar]
  6. Armstrong J. A., Hart P. D. ( 1971). Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J Exp Med 134:713–740 [View Article][PubMed]
    [Google Scholar]
  7. Ashiru O. T., Pillay M., Sturm A. W. ( 2010). Adhesion to and invasion of pulmonary epithelial cells by the F15/LAM4/KZN and Beijing strains of Mycobacterium tuberculosis . J Med Microbiol 59:528–533 [View Article][PubMed]
    [Google Scholar]
  8. Barbosa M. S., Báo S. N., Andreotti P. F., de Faria F. P., Felipe M. S., dos Santos Feitosa L., Mendes-Giannini M. J., Soares C. M. ( 2006). Glyceraldehyde-3-phosphate dehydrogenase of Paracoccidioides brasiliensis is a cell surface protein involved in fungal adhesion to extracellular matrix proteins and interaction with cells. Infect Immun 74:382–389 [View Article][PubMed]
    [Google Scholar]
  9. Barnhart M. M., Chapman M. R. ( 2006). Curli biogenesis and function. Annu Rev Microbiol 60:131–147 [View Article][PubMed]
    [Google Scholar]
  10. Bergmann S., Rohde M., Chhatwal G. S., Hammerschmidt S. ( 2001). α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287 [View Article][PubMed]
    [Google Scholar]
  11. Bergsten G., Wullt B., Schembri M. A., Leijonhufvud I., Svanborg C. ( 2007). Do type 1 fimbriae promote inflammation in the human urinary tract?. Cell Microbiol 9:1766–1781 [View Article][PubMed]
    [Google Scholar]
  12. Bermudez L. E., Goodman J. ( 1996). Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun 64:1400–1406[PubMed]
    [Google Scholar]
  13. Bermudez L. E., Sangari F. J., Kolonoski P., Petrofsky M., Goodman J. ( 2002). The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport within mononuclear phagocytes and invasion of alveolar epithelial cells. Infect Immun 70:140–146 [View Article][PubMed]
    [Google Scholar]
  14. Bodnar K. A., Serbina N. V., Flynn J. L. ( 2001). Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect Immun 69:800–809 [View Article][PubMed]
    [Google Scholar]
  15. Boël G., Jin H., Pancholi V. ( 2005). Inhibition of cell surface export of group A streptococcal anchorless surface dehydrogenase affects bacterial adherence and antiphagocytic properties. Infect Immun 73:6237–6248 [View Article][PubMed]
    [Google Scholar]
  16. Bothamley G. H., Beck J. S., Potts R. C., Grange J. M., Kardjito T., Ivanyi J. ( 1992a). Specificity of antibodies and tuberculin response after occupational exposure to tuberculosis. J Infect Dis 166:182–186 [View Article][PubMed]
    [Google Scholar]
  17. Bothamley G. H., Rudd R., Festenstein F., Ivanyi J. ( 1992b). Clinical value of the measurement of Mycobacterium tuberculosis specific antibody in pulmonary tuberculosis. Thorax 47:270–275 [View Article][PubMed]
    [Google Scholar]
  18. Brennan M. J., Delogu G., Chen Y., Bardarov S., Kriakov J., Alavi M., Jacobs W. R. Jr ( 2001). Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun 69:7326–7333 [View Article][PubMed]
    [Google Scholar]
  19. Brzuszkiewicz E., Brüggemann H., Liesegang H., Emmerth M., Olschläger T., Nagy G., Albermann K., Wagner C., Buchrieser C. & other authors ( 2006). How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci U S A 103:12879–12884 [View Article][PubMed]
    [Google Scholar]
  20. Castro-Garza J., King C. H., Swords W. E., Quinn F. D. ( 2002). Demonstration of spread by Mycobacterium tuberculosis bacilli in A549 epithelial cell monolayers. FEMS Microbiol Lett 212:145–149 [View Article][PubMed]
    [Google Scholar]
  21. Cherny I., Rockah L., Levy-Nissenbaum O., Gophna U., Ron E. Z., Gazit E. ( 2005). The formation of Escherichia coli curli amyloid fibrils is mediated by prion-like peptide repeats. J Mol Biol 352:245–252 [View Article][PubMed]
    [Google Scholar]
  22. Chhatwal G. S. ( 2002). Anchorless adhesins and invasins of Gram-positive bacteria: a new class of virulence factors. Trends Microbiol 10:205–208 [View Article][PubMed]
    [Google Scholar]
  23. Crandall E. D., Kim K. J. ( 1991). Alveolar epithelial barrier properties. The Lung: Scientific Foundations273–287 Crystal R. G., West J. B. New York: Raven Press;
    [Google Scholar]
  24. da Silva Neto B. R., de Fátima da Silva J., Mendes-Giannini M. J., Lenzi H. L., de Almeida Soares C. M., Pereira M. ( 2009). The malate synthase of Paracoccidioides brasiliensis is a linked surface protein that behaves as an anchorless adhesin. BMC Microbiol 9:272 [View Article][PubMed]
    [Google Scholar]
  25. Danelishvili L., McGarvey J., Li Y. J., Bermudez L. E. ( 2003). Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol 5:649–660 [View Article][PubMed]
    [Google Scholar]
  26. Delogu G., Brennan M. J. ( 1999). Functional domains present in the mycobacterial hemagglutinin, HBHA. J Bacteriol 181:7464–7469[PubMed]
    [Google Scholar]
  27. Delogu G., Brennan M. J. ( 2001). Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis . Infect Immun 69:5606–5611 [View Article][PubMed]
    [Google Scholar]
  28. Dersch P., Isberg R. R. ( 2000). An immunoglobulin superfamily-like domain unique to the Yersinia pseudotuberculosis invasin protein is required for stimulation of bacterial uptake via integrin receptors. Infect Immun 68:2930–2938 [View Article][PubMed]
    [Google Scholar]
  29. Diaz-Silvestre H., Espinosa-Cueto P., Sanchez-Gonzalez A., Esparza-Ceron M. A., Pereira-Suarez A. L., Bernal-Fernandez G., Espitia C., Mancilla R. ( 2005). The 19-kDa antigen of Mycobacterium tuberculosis is a major adhesin that binds the mannose receptor of THP-1 monocytic cells and promotes phagocytosis of mycobacteria. Microb Pathog 39:97–107 [View Article][PubMed]
    [Google Scholar]
  30. Dobos K. M., Spotts E. A., Quinn F. D., King C. H. ( 2000). Necrosis of lung epithelial cells during infection with Mycobacterium tuberculosis is preceded by cell permeation. Infect Immun 68:6300–6310 [View Article][PubMed]
    [Google Scholar]
  31. Dubnau E., Smith I. ( 2003). Mycobacterium tuberculosis gene expression in macrophages. Microbes Infect 5:629–637 [View Article][PubMed]
    [Google Scholar]
  32. Dumke R., Hausner M., Jacobs E. ( 2011). Role of Mycoplasma pneumoniae glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mediating interactions with the human extracellular matrix. Microbiology 157:2328–2338 [View Article][PubMed]
    [Google Scholar]
  33. Dunn M. F., Ramírez-Trujillo J. A., Hernández-Lucas I. ( 2009). Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 155:3166–3175 [View Article][PubMed]
    [Google Scholar]
  34. Esko J. D., Sharon N. ( 2009). Microbial lectins: hemagglutinins, adhesins, and toxins. Essentials of Glycobiology, 2nd edn.489–500 Varki A., Cummings R. D., Esko J. D., Freeze H. H., Stanley P., Bertozzi C. R., Hart G. W., Etzler M. E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  35. Espitia C., Rodríguez E., Ramón-Luing L., Echeverría-Valencia G., Vallecillo A. J. ( 2012). Host–pathogen interactions in tuberculosis. Understanding Tuberculosis - Analyzing the Origin of Mycobacterium Tuberculosis Pathogenicity Cardona P. Rijeka, Croatia: InTech Open Access Publisher; [View Article]
    [Google Scholar]
  36. Esposito C., Marasco D., Delogu G., Pedone E., Berisio R. ( 2011). Heparin-binding hemagglutinin HBHA from Mycobacterium tuberculosis affects actin polymerisation. Biochem Biophys Res Commun 410:339–344 [View Article][PubMed]
    [Google Scholar]
  37. Esposito C., Cantisani M., D’Auria G., Falcigno L., Pedone E., Galdiero S., Berisio R. ( 2012). Mapping key interactions in the dimerization process of HBHA from Mycobacterium tuberculosis, insights into bacterial agglutination. FEBS Lett 586:659–667 [View Article][PubMed]
    [Google Scholar]
  38. Fauci A. S., Alston B., Barry C. E., Augustine A. D., Fenton M. J., Handley F. G., Holland S. M., Huebner R. E., Jacobs G. NIAID Tuberculosis Working Group ( 2008). Multidrug-resistant and extensively drug-resistant tuberculosis: the National Institute of Allergy and Infectious Diseases Research agenda and recommendations for priority research. J Infect Dis 197:1493–1498 [View Article][PubMed]
    [Google Scholar]
  39. Finlay B. B., Cossart P. ( 1997). Exploitation of mammalian host cell functions by bacterial pathogens. Science 276:718–725 [View Article][PubMed]
    [Google Scholar]
  40. Finlay B. B., Falkow S. ( 1997). Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169[PubMed]
    [Google Scholar]
  41. Foster T. J., Geoghegan J. A., Ganesh V. K., Höök M. ( 2014). Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus . Nat Rev Microbiol 12:49–62 [View Article][PubMed]
    [Google Scholar]
  42. Gerlach R. G., Hensel M. ( 2007). Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297:401–415 [View Article][PubMed]
    [Google Scholar]
  43. Gillespie S. H. ( 2002). Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob Agents Chemother 46:267–274 [View Article][PubMed]
    [Google Scholar]
  44. Ginsberg A. M., Spigelman M. ( 2007). Challenges in tuberculosis drug research and development. Nat Med 13:290–294 [View Article][PubMed]
    [Google Scholar]
  45. Goluszko P., Goluszko E., Nowicki B., Nowicki S., Popov V., Wang H. Q. ( 2005). Vaccination with purified Dr fimbriae reduces mortality associated with chronic urinary tract infection due to Escherichia coli bearing Dr adhesin. Infect Immun 73:627–631 [View Article][PubMed]
    [Google Scholar]
  46. Gonzalez-Juarrero M., Orme I. M. ( 2001). Characterization of murine lung dendritic cells infected with Mycobacterium tuberculosis . Infect Immun 69:1127–1133 [View Article][PubMed]
    [Google Scholar]
  47. Greenaway C., Lienhardt C., Adegbola R., Brusasca P., McAdam K., Menzies D. ( 2005). Humoral response to Mycobacterium tuberculosis antigens in patients with tuberculosis in the Gambia. Int J Tuberc Lung Dis 9:1112–1119[PubMed]
    [Google Scholar]
  48. Harmsen A. G., Muggenburg B. A., Snipes M. B., Bice D. E. ( 1985). The role of macrophages in particle translocation from lungs to lymph nodes. Science 230:1277–1280 [View Article][PubMed]
    [Google Scholar]
  49. Henderson B., Martin A. ( 2011). Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79:3476–3491 [View Article][PubMed]
    [Google Scholar]
  50. Henderson H. J., Dannenberg A. M. Jr, Lurie M. B. ( 1963). Phagocytosis of tubercle bacilli by rabbit pulmonary alveolar macrophages and its relation to native resistance to tuberculosis. J Immunol 91:553–556[PubMed]
    [Google Scholar]
  51. Henderson B., Lund P. A., Coates A. R. ( 2010). Multiple moonlighting functions of mycobacterial molecular chaperones. Tuberculosis (Edinb) 90:119–124 [View Article][PubMed]
    [Google Scholar]
  52. Henderson B., Nair S., Pallas J., Williams M. A. ( 2011). Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35:147–200 [View Article][PubMed]
    [Google Scholar]
  53. Hendrickson R. C., Douglass J. F., Reynolds L. D., McNeill P. D., Carter D., Reed S. G., Houghton R. L. ( 2000). Mass spectrometric identification of Mtb81, a novel serological marker for tuberculosis. J Clin Microbiol 38:2354–2361[PubMed]
    [Google Scholar]
  54. Hickey T. B., Thorson L. M., Speert D. P., Daffé M., Stokes R. W. ( 2009). Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages. Infect Immun 77:3389–3401 [View Article][PubMed]
    [Google Scholar]
  55. Hickey T. B., Ziltener H. J., Speert D. P., Stokes R. W. ( 2010). Mycobacterium tuberculosis employs Cpn60.2 as an adhesin that binds CD43 on the macrophage surface. Cell Microbiol 12:1634–1647 [View Article][PubMed]
    [Google Scholar]
  56. Hu Y., Henderson B., Lund P. A., Tormay P., Ahmed M. T., Gurcha S. S., Besra G. S., Coates A. R. M. ( 2008). A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 76:1535–1546 [View Article][PubMed]
    [Google Scholar]
  57. Jackett P. S., Bothamley G. H., Batra H. V., Mistry A., Young D. B., Ivanyi J. ( 1988). Specificity of antibodies to immunodominant mycobacterial antigens in pulmonary tuberculosis. J Clin Microbiol 26:2313–2318[PubMed]
    [Google Scholar]
  58. Jassal M., Bishai W. R. ( 2009). Extensively drug-resistant tuberculosis. Lancet Infect Dis 9:19–30 [View Article][PubMed]
    [Google Scholar]
  59. Jin H., Agarwal S., Agarwal S., Pancholi V. ( 2011). Surface export of GAPDH/SDH, a glycolytic enzyme, is essential for Streptococcus pyogenes virulence. MBio 2:e00068-11 [View Article][PubMed]
    [Google Scholar]
  60. Joh D., Wann E. R., Kreikemeyer B., Speziale P., Höök M. ( 1999). Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol 18:211–223 [View Article][PubMed]
    [Google Scholar]
  61. Kao D. J., Churchill M. E., Irvin R. T., Hodges R. S. ( 2007). Animal protection and structural studies of a consensus sequence vaccine targeting the receptor binding domain of the type IV pilus of Pseudomonas aeruginosa . J Mol Biol 374:426–442 [View Article][PubMed]
    [Google Scholar]
  62. Kinhikar A. G., Vargas D., Li H., Mahaffey S. B., Hinds L., Belisle J. T., Laal S. ( 2006). Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol Microbiol 60:999–1013 [View Article][PubMed]
    [Google Scholar]
  63. Klemm P., Schembri M. A. ( 2000). Bacterial adhesins: function and structure. Int J Med Microbiol 290:27–35 [View Article][PubMed]
    [Google Scholar]
  64. Kline K. A., Fälker S., Dahlberg S., Normark S., Henriques-Normark B. ( 2009). Bacterial adhesins in host–microbe interactions. Cell Host Microbe 5:580–592 [View Article][PubMed]
    [Google Scholar]
  65. Krieger I. V., Freundlich J. S., Gawandi V. B., Roberts J. P., Gawandi V. B., Sun Q., Owen J. L., Fraile M. T., Huss S. I. & other authors ( 2012). Structure-guided discovery of phenyl-diketo acids as potent inhibitors of M. tuberculosis malate synthase. Chem Biol 19:1556–1567 [View Article][PubMed]
    [Google Scholar]
  66. Kumar S., Puniya B. L., Parween S., Nahar P., Ramachandran S. ( 2013). Identification of novel adhesins of M. tuberculosis H37Rv using integrated approach of multiple computational algorithms and experimental analysis. PLoS ONE 8:e69790 [View Article][PubMed]
    [Google Scholar]
  67. Langermann S., Möllby R., Burlein J. E., Palaszynski S. R., Auguste C. G., DeFusco A., Strouse R., Schenerman M. A., Hultgren S. J. & other authors ( 2000). Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli . J Infect Dis 181:774–778 [View Article][PubMed]
    [Google Scholar]
  68. Lebrun P., Raze D., Fritzinger B., Wieruszeski J. M., Biet F., Dose A., Carpentier M., Schwarzer D., Allain F. & other authors ( 2012). Differential contribution of the repeats to heparin binding of HBHA, a major adhesin of Mycobacterium tuberculosis . PLoS ONE 7:e32421 [View Article][PubMed]
    [Google Scholar]
  69. Lewthwaite J. C., Clarkin C. E., Coates A. R., Poole S., Lawrence R. A., Wheeler-Jones C. P., Pitsillides A. A., Singh M., Henderson B. ( 2007). Highly homologous Mycobacterium tuberculosis chaperonin 60 proteins with differential CD14 dependencies stimulate cytokine production by human monocytes through cooperative activation of p38 and ERK1/2 mitogen-activated protein kinases. Int Immunopharmacol 7:230–240 [View Article][PubMed]
    [Google Scholar]
  70. Lim J. H., Park J. K., Jo E. K., Song C. H., Min D., Song Y. J., Kim H. J. ( 1999). Purification and immunoreactivity of three components from the 30/32-kilodalton antigen 85 complex in Mycobacterium tuberculosis . Infect Immun 67:6187–6190[PubMed]
    [Google Scholar]
  71. Lipscomb M. F., Masten B. J. ( 2002). Dendritic cells: immune regulators in health and disease. Physiol Rev 82:97–130[PubMed]
    [Google Scholar]
  72. LoBue P. ( 2009). Extensively drug-resistant tuberculosis. Curr Opin Infect Dis 22:167–173 [View Article][PubMed]
    [Google Scholar]
  73. Luetkemeyer A. F., Getahun H., Chamie G., Lienhardt C., Havlir D. V. ( 2011). Tuberculosis drug development: ensuring people living with HIV are not left behind. Am J Respir Crit Care Med 184:1107–1113 [View Article][PubMed]
    [Google Scholar]
  74. Mandlik A., Swierczynski A., Das A., Ton-That H. ( 2008). Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40 [View Article][PubMed]
    [Google Scholar]
  75. Margarit I., Rinaudo C. D., Galeotti C. L., Maione D., Ghezzo C., Buttazzoni E., Rosini R., Runci Y., Mora M. & other authors ( 2009). Preventing bacterial infections with pilus-based vaccines: the group B streptococcus paradigm. J Infect Dis 199:108–115 [View Article][PubMed]
    [Google Scholar]
  76. Masungi C., Temmerman S., Van Vooren J. P., Drowart A., Pethe K., Menozzi F. D., Locht C., Mascart F. ( 2002). Differential T and B cell responses against Mycobacterium tuberculosis heparin-binding hemagglutinin adhesin in infected healthy individuals and patients with tuberculosis. J Infect Dis 185:513–520 [View Article][PubMed]
    [Google Scholar]
  77. Matta S. K., Agarwal S., Bhatnagar R. ( 2010). Surface localized and extracellular glyceraldehyde-3-phosphate dehydrogenase of Bacillus anthracis is a plasminogen binding protein. Biochim Biophys Acta 1804:2111–2120 [View Article][PubMed]
    [Google Scholar]
  78. McDonough K. A., Kress Y. ( 1995). Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis . Infect Immun 63:4802–4811[PubMed]
    [Google Scholar]
  79. Mehta P. K., King C. H., White E. H., Murtagh J. J. Jr, Quinn F. D. ( 1996). Comparison of in vitro models for the study of Mycobacterium tuberculosis invasion and intracellular replication. Infect Immun 64:2673–2679[PubMed]
    [Google Scholar]
  80. Menozzi F. D., Rouse J. H., Alavi M., Laude-Sharp M., Muller J., Bischoff R., Brennan M. J., Locht C. ( 1996). Identification of a heparin-binding hemagglutinin present in mycobacteria. J Exp Med 184:993–1001 [View Article][PubMed]
    [Google Scholar]
  81. Menozzi F. D., Bischoff R., Fort E., Brennan M. J., Locht C. ( 1998). Molecular characterization of the mycobacterial heparin-binding hemagglutinin, a mycobacterial adhesin. Proc Natl Acad Sci U S A 95:12625–12630 [View Article][PubMed]
    [Google Scholar]
  82. Menozzi F. D., Reddy V. M., Cayet D., Raze D., Debrie A. S., Dehouck M. P., Cecchelli R., Locht C. ( 2006). Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions. Microbes Infect 8:1–9 [View Article][PubMed]
    [Google Scholar]
  83. Mitchison D., Davies G. ( 2012). The chemotherapy of tuberculosis: past, present and future. Int J Tuberc Lung Dis 16:724–732 [View Article][PubMed]
    [Google Scholar]
  84. Monack D. M., Hultgren S. J. ( 2013). The complex interactions of bacterial pathogens and host defenses. Curr Opin Microbiol 16:1–3 [View Article][PubMed]
    [Google Scholar]
  85. Naidoo N., Ramsugit S., Pillay M. ( 2014). Mycobacterium tuberculosis pili (MTP), a putative biomarker for a tuberculosis diagnostic test. Tuberculosis (Edinb) 94:338–345 [View Article][PubMed]
    [Google Scholar]
  86. Nandakumar S., Kannanganat S., Dobos K. M., Lucas M., Spencer J. S., Fang S., McDonald M. A., Pohl J., Birkness K. & other authors ( 2013). O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection. PLoS Pathog 9:e1003705 [View Article][PubMed]
    [Google Scholar]
  87. Nguyen L., Pieters J. ( 2005). The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages. Trends Cell Biol 15:269–276 [View Article][PubMed]
    [Google Scholar]
  88. Niemann H. H., Schubert W. D., Heinz D. W. ( 2004). Adhesins and invasins of pathogenic bacteria: a structural view. Microbes Infect 6:101–112 [View Article][PubMed]
    [Google Scholar]
  89. Pancholi V. ( 2001). Multifunctional α-enolase: its role in diseases. Cell Mol Life Sci 58:902–920 [View Article][PubMed]
    [Google Scholar]
  90. Pancholi V., Chhatwal G. S. ( 2003). Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293:391–401 [View Article][PubMed]
    [Google Scholar]
  91. Pethe K., Aumercier M., Fort E., Gatot C., Locht C., Menozzi F. D. ( 2000). Characterization of the heparin-binding site of the mycobacterial heparin-binding hemagglutinin adhesin. J Biol Chem 275:14273–14280 [View Article][PubMed]
    [Google Scholar]
  92. Pethe K., Alonso S., Biet F., Delogu G., Brennan M. J., Locht C., Menozzi F. D. ( 2001). The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412:190–194 [View Article][PubMed]
    [Google Scholar]
  93. Pethe K., Bifani P., Drobecq H., Sergheraert C., Debrie A. S., Locht C., Menozzi F. D. ( 2002). Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis. Proc Natl Acad Sci U S A 99:10759–10764 [View Article][PubMed]
    [Google Scholar]
  94. Pinkner J. S., Remaut H., Buelens F., Miller E., Åberg V., Pemberton N., Hedenström M., Larsson A., Seed P. & other authors ( 2006). Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc Natl Acad Sci U S A 103:17897–17902 [View Article][PubMed]
    [Google Scholar]
  95. Pizarro-Cerdá J., Cossart P. ( 2006). Bacterial adhesion and entry into host cells. Cell 124:715–727 [View Article][PubMed]
    [Google Scholar]
  96. Purves J., Cockayne A., Moody P. C., Morrissey J. A. ( 2010). Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus . Infect Immun 78:5223–5232 [View Article][PubMed]
    [Google Scholar]
  97. Qamra R., Srinivas V., Mande S. C. ( 2004). Mycobacterium tuberculosis GroEL homologues unusually exist as lower oligomers and retain the ability to suppress aggregation of substrate proteins. J Mol Biol 342:605–617 [View Article][PubMed]
    [Google Scholar]
  98. Ragas A., Roussel L., Puzo G., Rivière M. ( 2007). The Mycobacterium tuberculosis cell-surface glycoprotein Apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A. J Biol Chem 282:5133–5142 [View Article][PubMed]
    [Google Scholar]
  99. Raja A., Uma Devi K. R., Ramalingam B., Brennan P. J. ( 2002). Immunoglobulin G, A, and M responses in serum and circulating immune complexes elicited by the 16-kilodalton antigen of Mycobacterium tuberculosis . Clin Diagn Lab Immunol 9:308–312[PubMed]
    [Google Scholar]
  100. Raja A., Uma Devi K. R., Ramalingam B., Brennan P. J. ( 2004). Improved diagnosis of pulmonary tuberculosis by detection of free and immune complex-bound anti-30 kDa antibodies. Diagn Microbiol Infect Dis 50:253–259 [View Article][PubMed]
    [Google Scholar]
  101. Ramsugit S., Pillay M. ( in press). Mycobacterium tuberculosis pili promote adhesion to, and invasion of THP-1 macrophages. Jpn J Infect Dis
    [Google Scholar]
  102. Ramsugit S., Guma S., Pillay B., Jain P., Larsen M. H., Danaviah S., Pillay M. ( 2013). Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis . Antonie van Leeuwenhoek 104:725–735 [View Article][PubMed]
    [Google Scholar]
  103. Ratliff T. L., McGarr J. A., Abou-Zeid C., Rook G. A., Stanford J. L., Aslanzadeh J., Brown E. J. ( 1988). Attachment of mycobacteria to fibronectin-coated surfaces. J Gen Microbiol 134:1307–1313[PubMed]
    [Google Scholar]
  104. Russell D. G. ( 2001). TB comes to a sticky beginning. Nat Med 7:894–895 [View Article][PubMed]
    [Google Scholar]
  105. Russell D. G., Barry C. E. III, Flynn J. L. ( 2010). Tuberculosis: what we don’t know can, and does, hurt us. Science 328:852–856 [View Article][PubMed]
    [Google Scholar]
  106. Salminen A., Loimaranta V., Joosten J. A., Khan A. S., Hacker J., Pieters R. J., Finne J. ( 2007). Inhibition of P-fimbriated Escherichia coli adhesion by multivalent galabiose derivatives studied by a live-bacteria application of surface plasmon resonance. J Antimicrob Chemother 60:495–501 [View Article][PubMed]
    [Google Scholar]
  107. Shahar A., Melamed-Frank M., Kashi Y., Shimon L., Adir N. ( 2011). The dimeric structure of the Cpn60.2 chaperonin of Mycobacterium tuberculosis at 2.8 Å reveals possible modes of function. J Mol Biol 412:192–203 [View Article][PubMed]
    [Google Scholar]
  108. Singh B., Fleury C., Jalalvand F., Riesbeck K. ( 2012a). Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 36:1122–1180 [View Article][PubMed]
    [Google Scholar]
  109. Singh V. K., Syring M., Singh A., Singhal K., Dalecki A., Johansson T. ( 2012b). An insight into the significance of the DnaK heat shock system in Staphylococcus aureus . Int J Med Microbiol 302:242–252 [View Article][PubMed]
    [Google Scholar]
  110. Smith I. ( 2003). Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16:463–496 [View Article][PubMed]
    [Google Scholar]
  111. Stokes R. W., Norris-Jones R., Brooks D. E., Beveridge T. J., Doxsee D., Thorson L. M. ( 2004). The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages. Infect Immun 72:5676–5686 [View Article][PubMed]
    [Google Scholar]
  112. Strindelius L., Folkesson A., Normark S., Sjöholm I. ( 2004). Immunogenic properties of the Salmonella atypical fimbriae in BALB/c mice. Vaccine 22:1448–1456 [View Article][PubMed]
    [Google Scholar]
  113. Strom M. S., Lory S. ( 1993). Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 47:565–596 [View Article][PubMed]
    [Google Scholar]
  114. Tailleux L., Neyrolles O., Honoré-Bouakline S., Perret E., Sanchez F., Abastado J. P., Lagrange P. H., Gluckman J. C., Rosenzwajg M., Herrmann J. L. ( 2003). Constrained intracellular survival of Mycobacterium tuberculosis in human dendritic cells. J Immunol 170:1939–1948 [View Article][PubMed]
    [Google Scholar]
  115. Tascon R. E., Soares C. S., Ragno S., Stavropoulos E., Hirst E. M. A., Colston M. J. ( 2000). Mycobacterium tuberculosis-activated dendritic cells induce protective immunity in mice. Immunology 99:473–480 [View Article][PubMed]
    [Google Scholar]
  116. Telford J. L., Barocchi M. A., Margarit I., Rappuoli R., Grandi G. ( 2006). Pili in gram-positive pathogens. Nat Rev Microbiol 4:509–519 [View Article][PubMed]
    [Google Scholar]
  117. Temmerman S., Pethe K., Parra M., Alonso S., Rouanet C., Pickett T., Drowart A., Debrie A. S., Delogu G. & other authors ( 2004). Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin. Nat Med 10:935–941 [View Article][PubMed]
    [Google Scholar]
  118. Tunio S. A., Oldfield N. J., Ala’Aldeen D. A., Wooldridge K. G., Turner D. P. ( 2010). The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells. BMC Microbiol 10:280 [CrossRef]
    [Google Scholar]
  119. Uma Devi K. R., Ramalingam B., Raja A. ( 2003). Antibody response to Mycobacterium tuberculosis 30 and 16kDa antigens in pulmonary tuberculosis with human immunodeficiency virus coinfection. Diagn Microbiol Infect Dis 46:205–209 [View Article][PubMed]
    [Google Scholar]
  120. van der Wel N., Hava D., Houben D., Fluitsma D., van Zon M., Pierson J., Brenner M., Peters P. J. ( 2007). M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298 [View Article][PubMed]
    [Google Scholar]
  121. Velayati A. A., Masjedi M. R., Farnia P., Tabarsi P., Ghanavi J., Ziazarifi A. H., Hoffner S. E. ( 2009). Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136:420–425 [View Article][PubMed]
    [Google Scholar]
  122. Vikerfors T., Olcén P., Wiker H., Watson J. D. ( 1993). Serological response in leprosy and tuberculosis patients to the 18-kDa antigen of Mycobacterium leprae and antigen 85B of Mycobacterium bovis BCG. Int J Lepr Other Mycobact Dis 61:571–580[PubMed]
    [Google Scholar]
  123. Wallis R. S., Pai M., Menzies D., Doherty T. M., Walzl G., Perkins M. D., Zumla A. ( 2010). Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet 375:1920–1937 [View Article][PubMed]
    [Google Scholar]
  124. Wellens A., Garofalo C., Nguyen H., Van Gerven N., Slättegård R., Hernalsteens J. P., Wyns L., Oscarson S., De Greve H. & other authors ( 2008). Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS ONE 3:e2040 [View Article][PubMed]
    [Google Scholar]
  125. World Health Organization( 2013). Global tuberculosis report 2013. http://apps.who.int/iris/bitstream/10665/91355/1/9789241564656_eng.pdf
  126. Zanetti S., Bua A., Delogu G., Pusceddu C., Mura M., Saba F., Pirina P., Garzelli C., Vertuccio C. & other authors ( 2005). Patients with pulmonary tuberculosis develop a strong humoral response against methylated heparin-binding hemagglutinin. Clin Diagn Lab Immunol 12:1135–1138[PubMed]
    [Google Scholar]
  127. Zhu H., Lee C., Zhang D., Wu W., Wang L., Fang X., Xu X., Song D., Xie J. & other authors ( 2013). Surface-associated GroEL facilitates the adhesion of Escherichia coli to macrophages through lectin-like oxidized low-density lipoprotein receptor-1. Microbes Infect 15:172–180 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082206-0
Loading
/content/journal/micro/10.1099/mic.0.082206-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed