1887

Abstract

Hydrogen peroxide (HO) is produced by several members of the genus mainly through the pyruvate oxidase SpxB under aerobic growth conditions. The acute toxic nature of HO raises the interesting question of how streptococci cope with intrinsically produced HO, which subsequently accumulates in the microenvironment and threatens the closely surrounding population. Here, we investigate the HO susceptibility of oral and and elucidate potential mechanisms of how they protect themselves from the deleterious effect of HO. Both organisms are considered primary colonizers and occupy the same intraoral niche making them potential targets for HO produced by other species. We demonstrate that produces relatively more HO and has a greater ability for resistance to HO stress. Functional studies show that, unlike in , HO resistance is not dependent on a functional SpxB and confirms the important role of the ferritin-like DNA-binding protein Dps. However, the observed increased HO resistance of over is likely to be caused by an oxidative stress protection machinery present even under anaerobic conditions, while requires a longer period of time for adaptation. The ability to produce more HO and be more resistant to HO might aid in the competitive oral biofilm environment, since it is lower in abundance yet manages to survive quite efficiently in the oral biofilm.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082156-0
2014-12-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2627.html?itemId=/content/journal/micro/10.1099/mic.0.082156-0&mimeType=html&fmt=ahah

References

  1. Archibald F. S. , Fridovich I. . ( 1981; ). Manganese and defenses against oxygen toxicity in Lactobacillus plantarum. . J Bacteriol 145:, 442–451.[PubMed]
    [Google Scholar]
  2. Ashby M. T. , Kreth J. , Soundarajan M. , Sivuilu L. S. . ( 2009; ). Influence of a model human defensive peroxidase system on oral streptococcal antagonism. . Microbiology 155:, 3691–3700. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brenot A. , King K. Y. , Caparon M. G. . ( 2005; ). The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. . Mol Microbiol 55:, 221–234. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brook I. . ( 1999; ). Bacterial interference. . Crit Rev Microbiol 25:, 155–172. [CrossRef] [PubMed]
    [Google Scholar]
  5. Carlsson J. , Edlund M. B. , Lundmark S. K. . ( 1987; ). Characteristics of a hydrogen peroxide-forming pyruvate oxidase from Streptococcus sanguis. . Oral Microbiol Immunol 2:, 15–20. [CrossRef] [PubMed]
    [Google Scholar]
  6. Crump K. E. , Bainbridge B. , Brusko S. , Turner L. S. , Ge X. , Stone V. , Xu P. , Kitten T. . ( 2014; ). The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis. . Mol Microbiol 92:, 1243–1259. [CrossRef] [PubMed]
    [Google Scholar]
  7. Das T. , Sharma P. K. , Krom B. P. , van der Mei H. C. , Busscher H. J. . ( 2011; ). Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity. . Langmuir 27:, 10113–10118. [CrossRef] [PubMed]
    [Google Scholar]
  8. DiGuiseppi J. , Fridovich I. . ( 1982; ). Oxygen toxicity in Streptococcus sanguis. The relative importance of superoxide and hydroxyl radicals. . J Biol Chem 257:, 4046–4051.[PubMed]
    [Google Scholar]
  9. Dunny G. M. , Lee L. N. , LeBlanc D. J. . ( 1991; ). Improved electroporation and cloning vector system for Gram-positive bacteria. . Appl Environ Microbiol 57:, 1194–1201.[PubMed]
    [Google Scholar]
  10. Engelmann S. , Hecker M. . ( 1996; ). Impaired oxidative stress resistance of Bacillus subtilis sigB mutants and the role of katA and katE. . FEMS Microbiol Lett 145:, 63–69. [CrossRef] [PubMed]
    [Google Scholar]
  11. Ezraty B. , Grimaud R. , El Hassouni M. , Moinier D. , Barras F. . ( 2004; ). Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli. . EMBO J 23:, 1868–1877. [CrossRef] [PubMed]
    [Google Scholar]
  12. Fuangthong M. , Herbig A. F. , Bsat N. , Helmann J. D. . ( 2002; ). Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. . J Bacteriol 184:, 3276–3286. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fujishima K. , Kawada-Matsuo M. , Oogai Y. , Tokuda M. , Torii M. , Komatsuzawa H. . ( 2013; ). dpr and sod in Streptococcus mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2 . . Appl Environ Microbiol 79:, 1436–1443. [CrossRef] [PubMed]
    [Google Scholar]
  14. Giliberti G. , Baccigalupi L. , Cordone A. , Ricca E. , De Felice M. . ( 2006; ). Transcriptional analysis of the recA gene of Streptococcus thermophilus. . Microb Cell Fact 5:, 29. [CrossRef] [PubMed]
    [Google Scholar]
  15. Grifantini R. , Toukoki C. , Colaprico A. , Gryllos I. . ( 2011; ). Peroxide stimulon and role of PerR in group A Streptococcus . . J Bacteriol 193:, 6539–6551. [CrossRef] [PubMed]
    [Google Scholar]
  16. He X. , McLean J. S. , Guo L. , Lux R. , Shi W. . ( 2014; ). The social structure of microbial community involved in colonization resistance. . ISME J 8:, 564–574. [CrossRef] [PubMed]
    [Google Scholar]
  17. Herbig A. F. , Helmann J. D. . ( 2001; ). Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. . Mol Microbiol 41:, 849–859. [CrossRef] [PubMed]
    [Google Scholar]
  18. Herzberg M. C. , Gong K. , MacFarlane G. D. , Erickson P. R. , Soberay A. H. , Krebsbach P. H. , Manjula G. , Schilling K. , Bowen W. H. . ( 1990; ). Phenotypic characterization of Streptococcus sanguis virulence factors associated with bacterial endocarditis. . Infect Immun 58:, 515–522.[PubMed]
    [Google Scholar]
  19. Herzberg M. C. , Meyer M. W. , Kiliç A. , Tao L. . ( 1997; ). Host-pathogen interactions in bacterial endocarditis: streptococcal virulence in the host. . Adv Dent Res 11:, 69–74. [CrossRef] [PubMed]
    [Google Scholar]
  20. Imlay J. A. . ( 2003; ). Pathways of oxidative damage. . Annu Rev Microbiol 57:, 395–418. [CrossRef] [PubMed]
    [Google Scholar]
  21. Imlay J. A. . ( 2013; ). The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. . Nat Rev Microbiol 11:, 443–454. [CrossRef] [PubMed]
    [Google Scholar]
  22. Itzek A. , Zheng L. , Chen Z. , Merritt J. , Kreth J. . ( 2011; ). Hydrogen peroxide-dependent DNA release and transfer of antibiotic resistance genes in Streptococcus gordonii. . J Bacteriol 193:, 6912–6922. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jakubovics N. S. , Smith A. W. , Jenkinson H. F. . ( 2002; ). Oxidative stress tolerance is manganese (Mn(2+)) regulated in Streptococcus gordonii. . Microbiology 148:, 3255–3263.[PubMed]
    [Google Scholar]
  24. Kim J. S. , Holmes R. K. . ( 2012; ). Characterization of OxyR as a negative transcriptional regulator that represses catalase production in Corynebacterium diphtheriae. . PLoS ONE 7:, e31709. [CrossRef] [PubMed]
    [Google Scholar]
  25. King K. Y. , Horenstein J. A. , Caparon M. G. . ( 2000; ). Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. . J Bacteriol 182:, 5290–5299. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kolenbrander P. E. , Palmer R. J. Jr , Rickard A. H. , Jakubovics N. S. , Chalmers N. I. , Diaz P. I. . ( 2006; ). Bacterial interactions and successions during plaque development. . Periodontol 2000 42:, 47–79. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kreth J. , Merritt J. , Shi W. , Qi F. . ( 2005; ). Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. . J Bacteriol 187:, 7193–7203. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kreth J. , Zhang Y. , Herzberg M. C. . ( 2008; ). Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. . J Bacteriol 190:, 4632–4640. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kreth J. , Vu H. , Zhang Y. , Herzberg M. C. . ( 2009; ). Characterization of hydrogen peroxide-induced DNA release by Streptococcus sanguinis and Streptococcus gordonii. . J Bacteriol 191:, 6281–6291. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kuramitsu H. K. , He X. , Lux R. , Anderson M. H. , Shi W. . ( 2007; ). Interspecies interactions within oral microbial communities. . Microbiol Mol Biol Rev 71:, 653–670. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lee J. W. , Helmann J. D. . ( 2006; ). The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. . Nature 440:, 363–367. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lei Y. , Zhang Y. , Guenther B. D. , Kreth J. , Herzberg M. C. . ( 2011; ). Mechanism of adhesion maintenance by methionine sulphoxide reductase in Streptococcus gordonii. . Mol Microbiol 80:, 726–738. [CrossRef] [PubMed]
    [Google Scholar]
  33. Len A. C. , Harty D. W. , Jacques N. A. . ( 2004; ). Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. . Microbiology 150:, 1339–1351. [CrossRef] [PubMed]
    [Google Scholar]
  34. Liu X. , Ramsey M. M. , Chen X. , Koley D. , Whiteley M. , Bard A. J. . ( 2011; ). Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. . Proc Natl Acad Sci U S A 108:, 2668–2673. [CrossRef] [PubMed]
    [Google Scholar]
  35. Makhlynets O. , Boal A. K. , Rhodes D. V. , Kitten T. , Rosenzweig A. C. , Stubbe J. . ( 2014; ). Streptococcus sanguinis class Ib ribonucleotide reductase: high activity with both iron and manganese cofactors and structural insights. . J Biol Chem 289:, 6259–6272. [CrossRef] [PubMed]
    [Google Scholar]
  36. Marco S. , Rullo R. , Albino A. , Masullo M. , De Vendittis E. , Amato M. . ( 2013; ). The thioredoxin system in the dental caries pathogen Streptococcus mutans and the food-industry bacterium Streptococcus thermophilus. . Biochimie 95:, 2145–2156. [CrossRef] [PubMed]
    [Google Scholar]
  37. Martin B. , Alloing G. , Méjean V. , Claverys J. P. . ( 1987; ). Constitutive expression of erythromycin resistance mediated by the ermAM determinant of plasmid pAM beta 1 results from deletion of 5′ leader peptide sequences. . Plasmid 18:, 250–253. [CrossRef] [PubMed]
    [Google Scholar]
  38. Mishra S. , Imlay J. . ( 2012; ). Why do bacteria use so many enzymes to scavenge hydrogen peroxide?. Arch Biochem Biophys 525:, 145–160. [CrossRef] [PubMed]
    [Google Scholar]
  39. Nobbs A. H. , Zhang Y. , Khammanivong A. , Herzberg M. C. . ( 2007; ). Streptococcus gordonii Hsa environmentally constrains competitive binding by Streptococcus sanguinis to saliva-coated hydroxyapatite. . J Bacteriol 189:, 3106–3114. [CrossRef] [PubMed]
    [Google Scholar]
  40. Novichkov P. S. , Laikova O. N. , Novichkova E. S. , Gelfand M. S. , Arkin A. P. , Dubchak I. , Rodionov D. A. . ( 2010; ). RegPrecise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes. . Nucleic Acids Res 38: (Database issue), D111–D118. [CrossRef] [PubMed]
    [Google Scholar]
  41. Pakula R. , Walczak W. . ( 1963; ). On the nature of competence of transformable streptococci. . J Gen Microbiol 31:, 125–133. [CrossRef] [PubMed]
    [Google Scholar]
  42. Pericone C. D. , Park S. , Imlay J. A. , Weiser J. N. . ( 2003; ). Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the fenton reaction. . J Bacteriol 185:, 6815–6825. [CrossRef] [PubMed]
    [Google Scholar]
  43. Podbielski A. , Spellerberg B. , Woischnik M. , Pohl B. , Lütticken R. . ( 1996; ). Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS). . Gene 177:, 137–147. [CrossRef] [PubMed]
    [Google Scholar]
  44. Pulliainen A. T. , Haataja S. , Kähkönen S. , Finne J. . ( 2003; ). Molecular basis of H2O2 resistance mediated by Streptococcal Dpr. Demonstration of the functional involvement of the putative ferroxidase center by site-directed mutagenesis in Streptococcus suis. . J Biol Chem 278:, 7996–8005. [CrossRef] [PubMed]
    [Google Scholar]
  45. Ramsey M. M. , Rumbaugh K. P. , Whiteley M. . ( 2011; ). Metabolite cross-feeding enhances virulence in a model polymicrobial infection. . PLoS Pathog 7:, e1002012. [CrossRef] [PubMed]
    [Google Scholar]
  46. Reid G. , Howard J. , Gan B. S. . ( 2001; ). Can bacterial interference prevent infection?. Trends Microbiol 9:, 424–428. [CrossRef] [PubMed]
    [Google Scholar]
  47. Rhodes D. V. , Crump K. E. , Makhlynets O. , Snyder M. , Ge X. , Xu P. , Stubbe J. , Kitten T. . ( 2014; ). Genetic characterization and role in virulence of the ribonucleotide reductases of Streptococcus sanguinis. . J Biol Chem 289:, 6273–6287. [CrossRef] [PubMed]
    [Google Scholar]
  48. Ricci S. , Janulczyk R. , Björck L. . ( 2002; ). The regulator PerR is involved in oxidative stress response and iron homeostasis and is necessary for full virulence of Streptococcus pyogenes. . Infect Immun 70:, 4968–4976. [CrossRef] [PubMed]
    [Google Scholar]
  49. Ritz D. , Beckwith J. . ( 2001; ). Roles of thiol-redox pathways in bacteria. . Annu Rev Microbiol 55:, 21–48. [CrossRef] [PubMed]
    [Google Scholar]
  50. Rosan B. , Lamont R. J. . ( 2000; ). Dental plaque formation. . Microbes Infect 2:, 1599–1607. [CrossRef] [PubMed]
    [Google Scholar]
  51. Sambrook J. , Fritsch E. F. , Maniatis T. . ( 1989; ). Molecular Cloning: A Laboratory Manual, , 2nd edn.. NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  52. Song J. H. , Ko K. S. , Lee J. Y. , Baek J. Y. , Oh W. S. , Yoon H. S. , Jeong J. Y. , Chun J. . ( 2005; ). Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. . Mol Cells 19:, 365–374.[PubMed]
    [Google Scholar]
  53. Tong H. , Chen W. , Merritt J. , Qi F. , Shi W. , Dong X. . ( 2007; ). Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: a possible counteroffensive strategy for interspecies competition. . Mol Microbiol 63:, 872–880.[PubMed] [CrossRef]
    [Google Scholar]
  54. Tseng H. J. , Srikhanta Y. , McEwan A. G. , Jennings M. P. . ( 2001; ). Accumulation of manganese in Neisseria gonorrhoeae correlates with resistance to oxidative killing by superoxide anion and is independent of superoxide dismutase activity. . Mol Microbiol 40:, 1175–1186. [CrossRef] [PubMed]
    [Google Scholar]
  55. Wang X. , Tong H. , Dong X. . ( 2014; ). PerR-regulated manganese ion uptake contributes to oxidative stress defense in an oral streptococcus. . Appl Environ Microbiol 80:, 2351–2359. [CrossRef] [PubMed]
    [Google Scholar]
  56. Watanabe K. , Tanaka T. , Shigemi T. , Hayashida Y. , Maki K. . ( 2009; ). Mn and Cu concentrations in mixed saliva of elementary school children in relation to sex, age, and dental caries. . J Trace Elem Med Biol 23:, 93–99. [CrossRef] [PubMed]
    [Google Scholar]
  57. Xu P. , Alves J. M. , Kitten T. , Brown A. , Chen Z. , Ozaki L. S. , Manque P. , Ge X. , Serrano M. G. . & other authors ( 2007; ). Genome of the opportunistic pathogen Streptococcus sanguinis. . J Bacteriol 189:, 3166–3175. [CrossRef] [PubMed]
    [Google Scholar]
  58. Yamamoto Y. , Poole L. B. , Hantgan R. R. , Kamio Y. . ( 2002; ). An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. . J Bacteriol 184:, 2931–2939. [CrossRef] [PubMed]
    [Google Scholar]
  59. Yesilkaya H. , Andisi V. F. , Andrew P. W. , Bijlsma J. J. . ( 2013; ). Streptococcus pneumoniae and reactive oxygen species: an unusual approach to living with radicals. . Trends Microbiol 21:, 187–195. [CrossRef] [PubMed]
    [Google Scholar]
  60. Zhang T. , Ding Y. , Li T. , Wan Y. , Li W. , Chen H. , Zhou R. . ( 2012; ). A Fur-like protein PerR regulates two oxidative stress response related operons dpr and metQIN in Streptococcus suis. . BMC Microbiol 12:, 85. [CrossRef] [PubMed]
    [Google Scholar]
  61. Zheng L. , Chen Z. , Itzek A. , Ashby M. , Kreth J. . ( 2011a; ). Catabolite control protein A controls hydrogen peroxide production and cell death in Streptococcus sanguinis. . J Bacteriol 193:, 516–526. [CrossRef] [PubMed]
    [Google Scholar]
  62. Zheng L. Y. , Itzek A. , Chen Z. Y. , Kreth J. . ( 2011b; ). Oxygen dependent pyruvate oxidase expression and production in Streptococcus sanguinis. . Int J Oral Sci 3:, 82–89. [CrossRef] [PubMed]
    [Google Scholar]
  63. Zheng L. , Chen Z. , Itzek A. , Herzberg M. C. , Kreth J. . ( 2012; ). CcpA regulates biofilm formation and competence in Streptococcus gordonii. . Mol Oral Microbiol 27:, 83–94. [CrossRef] [PubMed]
    [Google Scholar]
  64. Zhu L. , Kreth J. . ( 2012; ). The role of hydrogen peroxide in environmental adaptation of oral microbial communities. . Oxid Med Cell Longev 2012:, 717843. [CrossRef] [PubMed]
    [Google Scholar]
  65. Zhu L. , Zhang Y. , Fan J. , Herzberg M. C. , Kreth J. . ( 2011; ). Characterization of competence and biofilm development of a Streptococcus sanguinis endocarditis isolate. . Mol Oral Microbiol 26:, 117–126. [CrossRef] [PubMed]
    [Google Scholar]
  66. Zhu L. , Xu Y. , Ferretti J. J. , Kreth J. . ( 2014; ). Probing oral microbial functionality–expression of spxB in plaque samples . . PLoS ONE 9:, e86685. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082156-0
Loading
/content/journal/micro/10.1099/mic.0.082156-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error