1887

Abstract

The obligate intracellular Gram-negative bacterium causes Q fever, a worldwide zoonosis. Here we labelled with biotin and used biotin-streptavidin affinity chromatography to isolate surface-exposed proteins (SEPs). Using two-dimensional electrophoresis combined with mass spectrometry, we identified 37 proteins through bioinformatics analysis. Thirty SEPs expressed in (recombinant SEPs, rSEPs) were used to generate microarrays, which were probed with sera from mice experimentally infected with or sera from Q fever patients. Thirteen rSEPs were recognized as seroreactive, and the majority reacted with at least 50 % of the sera from mice infected with but not with sera from mice infected with , or Further, 13 proteins that reacted with sera from patients with Q fever did not react with sera from patients with brucellosis or mycoplasma pneumonia. Our results suggest that these seroreactive SEPs have potential as serodiagnostic antigens or as subunit vaccine antigens against Q fever.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.082131-0
2014-12-01
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2718.html?itemId=/content/journal/micro/10.1099/mic.0.082131-0&mimeType=html&fmt=ahah

References

  1. Ackland J. R., Worswick D. A., Marmion B. P.. ( 1994;). Vaccine prophylaxis of Q fever. A follow-up study of the efficacy of Q-Vax (CSL) 1985-1990. . Med J Aust 160:, 704–708.[PubMed]
    [Google Scholar]
  2. Almogren A., Shakoor Z., Hasanato R., Adam M. H.. ( 2013;). Q fever: a neglected zoonosis in Saudi Arabia. . Ann Saudi Med 33:, 464–468.[PubMed]
    [Google Scholar]
  3. Anastácio S., Tavares N., Carolino N., Sidi-Boumedine K., da Silva G. J.. ( 2013;). Serological evidence of exposure to Coxiella burnetii in sheep and goats in central Portugal. . Vet Microbiol 167:, 500–505. [CrossRef][PubMed]
    [Google Scholar]
  4. Arnold F. W., Summersgill J. T., Lajoie A. S., Peyrani P., Marrie T. J., Rossi P., Blasi F., Fernandez P., File T. M. Jr. & other authors ( 2007;). A worldwide perspective of atypical pathogens in community-acquired pneumonia. . Am J Respir Crit Care Med 175:, 1086–1093. [CrossRef][PubMed]
    [Google Scholar]
  5. Barel M., Hovanessian A. G., Meibom K., Briand J. P., Dupuis M., Charbit A.. ( 2008;). A novel receptor - ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. . BMC Microbiol 8:, 145. [CrossRef][PubMed]
    [Google Scholar]
  6. Barriuso-Iglesias M., Schluesener D., Barreiro C., Poetsch A., Martín J. F.. ( 2008;). Response of the cytoplasmic and membrane proteome of Corynebacterium glutamicum ATCC 13032 to pH changes. . BMC Microbiol 8:, 225. [CrossRef][PubMed]
    [Google Scholar]
  7. Beare P. A., Chen C., Bouman T., Pablo J., Unal B., Cockrell D. C., Brown W. C., Barbian K. D., Porcella S. F.. & other authors ( 2008;). Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. . Clin Vaccine Immunol 15:, 1771–1779. [CrossRef][PubMed]
    [Google Scholar]
  8. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. ( 2004;). Improved prediction of signal peptides: SignalP 3.0. . J Mol Biol 340:, 783–795. [CrossRef][PubMed]
    [Google Scholar]
  9. Bonomi H. R., Marchesini M. I., Klinke S., Ugalde J. E., Zylberman V., Ugalde R. A., Comerci D. J., Goldbaum F. A.. ( 2010;). An atypical riboflavin pathway is essential for Brucella abortus virulence. . PLoS ONE 5:, e9435. [CrossRef][PubMed]
    [Google Scholar]
  10. Carey K. L., Newton H. J., Lührmann A., Roy C. R.. ( 2011;). The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. . PLoS Pathog 7:, e1002056. [CrossRef][PubMed]
    [Google Scholar]
  11. Clifton D. R., Goss R. A., Sahni S. K., van Antwerp D., Baggs R. B., Marder V. J., Silverman D. J., Sporn L. A.. ( 1998;). NF-kappa B-dependent inhibition of apoptosis is essential for host cellsurvival during Rickettsia rickettsii infection. . Proc Natl Acad Sci U S A 95:, 4646–4651. [CrossRef][PubMed]
    [Google Scholar]
  12. Cole J. N., Ramirez R. D., Currie B. J., Cordwell S. J., Djordjevic S. P., Walker M. J.. ( 2005;). Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus. . Infect Immun 73:, 3137–3146. [CrossRef][PubMed]
    [Google Scholar]
  13. Dean A. S., Bonfoh B., Kulo A. E., Boukaya G. A., Amidou M., Hattendorf J., Pilo P., Schelling E.. ( 2013;). Epidemiology of brucellosis and Q fever in linked human and animal populations in northern togo. . PLoS ONE 8:, e71501. [CrossRef][PubMed]
    [Google Scholar]
  14. Du R. J., Ho B.. ( 2003;). Surface localized Heat Shock Protein 20 (HslV) of Helicobacter pylori. . Helicobacter 8:, 257–267. [CrossRef][PubMed]
    [Google Scholar]
  15. Economou A.. ( 1998;). Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme. . Mol Microbiol 27:, 511–518. [CrossRef][PubMed]
    [Google Scholar]
  16. Esmaeili S., Pourhossein B., Gouya M. M., Amiri F. B., Mostafavi E.. ( 2014;). Seroepidemiological survey of Q fever and brucellosis in Kurdistan Province, western Iran. . Vector Borne Zoonotic Dis 14:, 41–45. [CrossRef][PubMed]
    [Google Scholar]
  17. Estein S. M., Fiorentino M. A., Paolicchi F. A., Clausse M., Manazza J., Cassataro J., Giambartolomei G. H., Coria L. M., Zylberman V.. & other authors ( 2009;). The polymeric antigen BLSOmp31 confers protection against Brucella ovis infection in rams. . Vaccine 27:, 6704–6711. [CrossRef][PubMed]
    [Google Scholar]
  18. Fournier P. E., Marrie T. J., Raoult D.. ( 1998;). Diagnosis of Q fever. . J Clin Microbiol 36:, 1823–1834.[PubMed]
    [Google Scholar]
  19. Gatlin C. L., Pieper R., Huang S. T., Mongodin E., Gebregeorgis E., Parmar P. P., Clark D. J., Alami H., Papazisi L.. & other authors ( 2006;). Proteomic profiling of cell envelope-associated proteins from Staphylococcus aureus. . Proteomics 6:, 1530–1549. [CrossRef][PubMed]
    [Google Scholar]
  20. Gong W., Xiong X., Qi Y., Jiao J., Duan C., Wen B.. ( 2014;). Identification of novel surface-exposed proteins of Rickettsia rickettsii by affinity purification and proteomics. . PLoS ONE 9:, e100253. [CrossRef][PubMed]
    [Google Scholar]
  21. Hendrix L. R., Samuel J. E., Mallavia L. P.. ( 1990;). Identification and cloning of a 27-kDa Coxiella burnetii immunoreactive protein. . Ann N Y Acad Sci 590: (1 Rickettsiolog), 534–540. [CrossRef][PubMed]
    [Google Scholar]
  22. Houpikian P., Raoult D.. ( 2003;). Diagnostic methods. Current best practices and guidelines for identification of difficult-to-culture pathogens in infective endocarditis. . Cardiol Clin 21:, 207–217. [CrossRef][PubMed]
    [Google Scholar]
  23. Huisman G. W., Kolter R.. ( 1994;). Sensing starvation: a homoserine lactone–dependent signaling pathway in Escherichia coli. . Science 265:, 537–539. [CrossRef][PubMed]
    [Google Scholar]
  24. Jameson-Lee M., Garduño R. A., Hoffman P. S.. ( 2011;). DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracytoplasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system. . Mol Microbiol 80:, 835–852. [CrossRef][PubMed]
    [Google Scholar]
  25. Juncker A. S., Willenbrock H., Von Heijne G., Brunak S., Nielsen H., Krogh A.. ( 2003;). Prediction of lipoprotein signal peptides in Gram-negative bacteria. . Protein Sci 12:, 1652–1662. [CrossRef][PubMed]
    [Google Scholar]
  26. Kampschreur L. M., Hoornenborg E., Renders N. H., Oosterheert J. J., Haverman J. F., Elsman P., Wever P. C.. ( 2013;). Delayed diagnosis of chronic Q fever and cardiac valve surgery. . Emerg Infect Dis 19:, 768–773. [CrossRef][PubMed]
    [Google Scholar]
  27. Kokkini S., Chochlakis D., Vranakis I., Angelakis E., Tselentis Y., Gikas A., Psaroulaki A.. ( 2013;). Antibody kinetics in serological indication of chronic Q fever: the Greek experience. . Int J Infect Dis 17:, e977–e980. [CrossRef][PubMed]
    [Google Scholar]
  28. Kwak W., Chu H., Hwang S., Park J. H., Hwang K. J., Gwack J., Choi Y. S., Youn S. K., Park M. Y.. ( 2013;). Epidemiological characteristics of serologically confirmed Q fever cases in South Korea, 2006-2011. . Osong Public Health Res Perspect 4:, 34–38. [CrossRef][PubMed]
    [Google Scholar]
  29. La Carbona S., Sauvageot N., Giard J. C., Benachour A., Posteraro B., Auffray Y., Sanguinetti M., Hartke A.. ( 2007;). Comparative study of the physiological roles of three peroxidases (NADH peroxidase, Alkyl hydroperoxide reductase and Thiol peroxidase) in oxidative stress response, survival inside macrophages and virulence of Enterococcus faecalis. . Mol Microbiol 66:, 1148–1163. [CrossRef][PubMed]
    [Google Scholar]
  30. Lai C. H., Chang L. L., Lin J. N., Chen W. F., Kuo L. L., Lin H. H., Chen Y. H.. ( 2013;). High seroprevalence of Mycoplasma pneumoniae IgM in acute Q fever by enzyme-linked immunosorbent assay (ELISA). . PLoS ONE 8:, e77640. [CrossRef][PubMed]
    [Google Scholar]
  31. Lazzaroni J. C., Germon P., Ray M. C., Vianney A.. ( 1999;). The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. . FEMS Microbiol Lett 177:, 191–197. [CrossRef][PubMed]
    [Google Scholar]
  32. Li Q., Niu D., Wen B., Chen M., Qiu L., Zhang J.. ( 2005;). Protective immunity against Q fever induced with a recombinant P1 antigen fused with HspB of Coxiella burnetii. . Ann N Y Acad Sci 1063:, 130–142. [CrossRef][PubMed]
    [Google Scholar]
  33. Mathew R., Mukherjee R., Balachandar R., Chatterji D.. ( 2006;). Deletion of the rpoZ gene, encoding the omega subunit of RNA polymerase, results in pleiotropic surface-related phenotypes in Mycobacterium smegmatis. . Microbiology 152:, 1741–1750. [CrossRef][PubMed]
    [Google Scholar]
  34. McBride J. W., Ndip L. M., Popov V. L., Walker D. H.. ( 2002;). Identification and functional analysis of an immunoreactive DsbA-like thio-disulfide oxidoreductase of Ehrlichia spp.. Infect Immun 70:, 2700–2703. [CrossRef][PubMed]
    [Google Scholar]
  35. Mendum T. A., Newcombe J., McNeilly C. L., McFadden J.. ( 2009;). Towards the immunoproteome of Neisseria meningitidis. . PLoS ONE 4:, e5940. [CrossRef][PubMed]
    [Google Scholar]
  36. Meyer R. R., Laine P. S.. ( 1990;). The single-stranded DNA-binding protein of Escherichia coli. . Microbiol Rev 54:, 342–380.[PubMed]
    [Google Scholar]
  37. Missiakas D., Betton J. M., Raina S.. ( 1996;). New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. . Mol Microbiol 21:, 871–884. [CrossRef][PubMed]
    [Google Scholar]
  38. Mo Y. Y., Cianciotto N. P., Mallavia L. P.. ( 1995;). Molecular cloning of a Coxiella burnetii gene encoding a macrophage infectivity potentiator (Mip) analogue. . Microbiology 141:, 2861–2871. [CrossRef][PubMed]
    [Google Scholar]
  39. Morash M. G., Brassinga A. K., Warthan M., Gourabathini P., Garduño R. A., Goodman S. D., Hoffman P. S.. ( 2009;). Reciprocal expression of integration host factor and HU in the developmental cycle and infectivity of Legionella pneumophila. . Appl Environ Microbiol 75:, 1826–1837. [CrossRef][PubMed]
    [Google Scholar]
  40. Ogawa M., Renesto P., Azza S., Moinier D., Fourquet P., Gorvel J. P., Raoult D.. ( 2007;). Proteome analysis of Rickettsia felis highlights the expression profile of intracellular bacteria. . Proteomics 7:, 1232–1248. [CrossRef][PubMed]
    [Google Scholar]
  41. Ohtsuka J., Ichihara Y., Ebihara A., Nagata K., Tanokura M.. ( 2009;). Crystal structure of TTHA1264, a putative M16-family zinc peptidase from Thermus thermophilus HB8 that is homologous to the beta subunit of mitochondrial processing peptidase. . Proteins 75:, 774–780. [CrossRef][PubMed]
    [Google Scholar]
  42. Overton T. W., Justino M. C., Li Y., Baptista J. M., Melo A. M., Cole J. A., Saraiva L. M.. ( 2008;). Widespread distribution in pathogenic bacteria of di-iron proteins that repair oxidative and nitrosative damage to iron-sulfur centers. . J Bacteriol 190:, 2004–2013. [CrossRef][PubMed]
    [Google Scholar]
  43. Pacheco-Gómez R., Cheng X., Hicks M. R., Smith C. J., Roper D. I., Addinall S., Rodger A., Dafforn T. R.. ( 2013;). Tetramerization of ZapA is required for FtsZ bundling. . Biochem J 449:, 795–802. [CrossRef][PubMed]
    [Google Scholar]
  44. Papadioti A., Markoutsa S., Vranakis I., Tselentis Y., Karas M., Psaroulaki A., Tsiotis G.. ( 2011;). A proteomic approach to investigate the differential antigenic profile of two Coxiella burnetii strains. . J Proteomics 74:, 1150–1159. [CrossRef][PubMed]
    [Google Scholar]
  45. Peacock M. G., Philip R. N., Williams J. C., Faulkner R. S.. ( 1983;). Serological evaluation of O fever in humans: enhanced phase I titers of immunoglobulins G and A are diagnostic for Q fever endocarditis. . Infect Immun 41:, 1089–1098.[PubMed]
    [Google Scholar]
  46. Pornwiroon W., Bourchookarn A., Paddock C. D., Macaluso K. R.. ( 2009;). Proteomic analysis of Rickettsia parkeri strain portsmouth. . Infect Immun 77:, 5262–5271. [CrossRef][PubMed]
    [Google Scholar]
  47. Qi Y., Xiong X., Wang X., Duan C., Jia Y., Jiao J., Gong W., Wen B.. ( 2013;). Proteome analysis and serological characterization of surface-exposed proteins of Rickettsia heilongjiangensis. . PLoS ONE 8:, e70440. [CrossRef][PubMed]
    [Google Scholar]
  48. Randall L. L., Hardy S. J.. ( 2002;). SecB, one small chaperone in the complex milieu of the cell. . Cell Mol Life Sci 59:, 1617–1623. [CrossRef][PubMed]
    [Google Scholar]
  49. Roest H. I., Tilburg J. J., van der Hoek W., Vellema P., van Zijderveld F. G., Klaassen C. H., Raoult D.. ( 2011;). The Q fever epidemic in The Netherlands: history, onset, response and reflection. . Epidemiol Infect 139:, 1–12. [CrossRef][PubMed]
    [Google Scholar]
  50. Rossiter A. E., Browning D. F., Leyton D. L., Johnson M. D., Godfrey R. E., Wardius C. A., Desvaux M., Cunningham A. F., Ruiz-Perez F.. & other authors ( 2011;). Transcription of the plasmid-encoded toxin gene from enteroaggregative Escherichia coli is regulated by a novel co-activation mechanism involving CRP and Fis. . Mol Microbiol 81:, 179–191. [CrossRef][PubMed]
    [Google Scholar]
  51. Santhanagopalan V., Coker C., Radulovic S.. ( 2006;). Characterization of RP 333, a gene encoding CapD of Rickettsia prowazekii with UDP-glucose 4-epimerase activity. . Gene 369:, 119–125. [CrossRef][PubMed]
    [Google Scholar]
  52. Sears K. T., Ceraul S. M., Gillespie J. J., Allen E. D. Jr, Popov V. L., Ammerman N. C., Rahman M. S., Azad A. F.. ( 2012;). Surface proteome analysis and characterization of surface cell antigen (Sca) or autotransporter family of Rickettsia typhi. . PLoS Pathog 8:, e1002856. [CrossRef][PubMed]
    [Google Scholar]
  53. Sekeyová Z., Kowalczewska M., Decloquement P., Pelletier N., Spitalská E., Raoult D.. ( 2009;). Identification of protein candidates for the serodiagnosis of Q fever endocarditis by an immunoproteomic approach. . Eur J Clin Microbiol Infect Dis 28:, 287–295. [CrossRef][PubMed]
    [Google Scholar]
  54. Seshadri R., Hendrix L. R., Samuel J. E.. ( 1999;). Differential expression of translational elements by life cycle variants of Coxiella burnetii. . Infect Immun 67:, 6026–6033.[PubMed]
    [Google Scholar]
  55. Seydlová G., Halada P., Fišer R., Toman O., Ulrych A., Svobodová J.. ( 2012;). DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. . J Appl Microbiol 112:, 765–774. [CrossRef][PubMed]
    [Google Scholar]
  56. Shi S., Ehrt S.. ( 2006;). Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. . Infect Immun 74:, 56–63. [CrossRef][PubMed]
    [Google Scholar]
  57. Spence J. M., Clark V. L.. ( 2000;). Role of ribosomal protein L12 in gonococcal invasion of Hec1B cells. . Infect Immun 68:, 5002–5010. [CrossRef][PubMed]
    [Google Scholar]
  58. Stoll H., Dengjel J., Nerz C., Götz F.. ( 2005;). Staphylococcus aureus deficient in lipidation of prelipoproteins is attenuated in growth and immune activation. . Infect Immun 73:, 2411–2423. [CrossRef][PubMed]
    [Google Scholar]
  59. Stonehouse E., Kovacikova G., Taylor R. K., Skorupski K.. ( 2008;). Integration host factor positively regulates virulence gene expression in Vibrio cholerae. . J Bacteriol 190:, 4736–4748. [CrossRef][PubMed]
    [Google Scholar]
  60. Tsugawa H., Ito H., Ohshima M., Okawa Y.. ( 2007;). Cell adherence-promoted activity of Plesiomonas shigelloides groEL. . J Med Microbiol 56:, 23–29. [CrossRef][PubMed]
    [Google Scholar]
  61. Varghees S., Kiss K., Frans G., Braha O., Samuel J. E.. ( 2002;). Cloning and porin activity of the major outer membrane protein P1 from Coxiella burnetii. . Infect Immun 70:, 6741–6750. [CrossRef][PubMed]
    [Google Scholar]
  62. Wang X., Xiong X., Graves S., Stenos J., Wen B.. ( 2013;). Protein array of Coxiella burnetii probed with Q fever sera. . Sci China Life Sci 56:, 453–459. [CrossRef][PubMed]
    [Google Scholar]
  63. Watanabe A., Takahashi H.. ( 2008;). Diagnosis and treatment of Q fever: attempts to clarify current problems in Japan. . J Infect Chemother 14:, 1–7. [CrossRef][PubMed]
    [Google Scholar]
  64. Wei Y., Wang X., Xiong X., Wen B.. ( 2011;). Coxiella burnetii antigen-stimulated dendritic cells mediated protection against Coxiella burnetii in BALB/c mice. . J Infect Dis 203:, 283–291. [CrossRef][PubMed]
    [Google Scholar]
  65. Wilkins J. C., Beighton D., Homer K. A.. ( 2003;). Effect of acidic pH on expression of surface-associated proteins of Streptococcus oralis. . Appl Environ Microbiol 69:, 5290–5296. [CrossRef][PubMed]
    [Google Scholar]
  66. Wu Z., Zhang W., Lu C.. ( 2008;). Immunoproteomic assay of surface proteins of Streptococcus suis serotype 9. . FEMS Immunol Med Microbiol 53:, 52–59. [CrossRef][PubMed]
    [Google Scholar]
  67. Xiong X., Meng Y., Wang X., Qi Y., Li J., Duan C., Wen B.. ( 2012a;). Mice immunized with bone marrow-derived dendritic cells stimulated with recombinant Coxiella burnetii Com1 and Mip demonstrate enhanced bacterial clearance in association with a Th1 immune response. . Vaccine 30:, 6809–6815. [CrossRef][PubMed]
    [Google Scholar]
  68. Xiong X., Wang X., Wen B., Graves S., Stenos J.. ( 2012b;). Potential serodiagnostic markers for Q fever identified in Coxiella burnetii by immunoproteomic and protein microarray approaches. . BMC Microbiol 12:, 35. [CrossRef][PubMed]
    [Google Scholar]
  69. Yohannes E., Thurber A. E., Wilks J. C., Tate D. P., Slonczewski J. L.. ( 2005;). Polyamine stress at high pH in Escherichia coli K-12. . BMC Microbiol 5:, 59. [CrossRef][PubMed]
    [Google Scholar]
  70. Zhang G., To H., Russell K. E., Hendrix L. R., Yamaguchi T., Fukushi H., Hirai K., Samuel J. E.. ( 2005;). Identification and characterization of an immunodominant 28-kilodalton Coxiella burnetii outer membrane protein specific to isolates associated with acute disease. . Infect Immun 73:, 1561–1567. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.082131-0
Loading
/content/journal/micro/10.1099/mic.0.082131-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error