1887

Abstract

is an opportunistic pathogen important in hospital-acquired infections, which are complicated by the rise of drug-resistant strains and the capacity of cells to adhere to surfaces and form biofilms. In this work, we carried out an analysis of the genes in the operon, previously implicated in biofilm formation. The results indicated that in addition to the previously reported effect on type 3 fimbriae expression, this operon also affected biofilm formation due to changes in cellulose as part of the extracellular matrix. Deletion of resulted in enhanced biofilm formation and an altered colony phenotype indicative of cellulose overproduction when grown on solid indicator media. Extraction of polysaccharides and treatment with cellulase were consistent with the presence of cellulose in biofilms. The enhanced cellulose production did not, however, correlate with virulence as assessed using a assay. In addition, cells bearing mutations in genes of the operon varied with respect to the WT control in terms of susceptibility to the antibiotics amikacin, ciprofloxacin, imipenem and meropenem. These results indicated that the operon is implicated in the production of exopolysaccharides that alter cell surface characteristics and the capacity to form biofilms – a phenotype that does not necessarily correlate with properties related with survival, such as resistance to antibiotics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081992-0
2014-12-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2595.html?itemId=/content/journal/micro/10.1099/mic.0.081992-0&mimeType=html&fmt=ahah

References

  1. Amikam D., Galperin M. Y.. ( 2006;). PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics22:3–6 [CrossRef][PubMed]
    [Google Scholar]
  2. Bales P. M., Renke E. M., May S. L., Shen Y., Nelson D. C.. ( 2013;). Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS ONE8:e67950 [CrossRef][PubMed]
    [Google Scholar]
  3. Balestrino D., Haagensen J. A., Rich C., Forestier C.. ( 2005;). Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J Bacteriol187:2870–2880 [CrossRef][PubMed]
    [Google Scholar]
  4. Balestrino D., Ghigo J. M., Charbonnel N., Haagensen J. A., Forestier C.. ( 2008;). The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol10:685–701 [CrossRef][PubMed]
    [Google Scholar]
  5. Barnhart D. M., Su S., Baccaro B. E., Banta L. M., Farrand S. K.. ( 2013;). CelR, an ortholog of the diguanylate cyclase PleD of Caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens . Appl Environ Microbiol79:7188–7202 [CrossRef][PubMed]
    [Google Scholar]
  6. Bhowmick P. P., Devegowda D., Ruwandeepika H. A., Fuchs T. M., Srikumar S., Karunasagar I., Karunasagar I.. ( 2011;). gcpA (stm1987) is critical for cellulose production and biofilm formation on polystyrene surface by Salmonella enterica serovar Weltevreden in both high and low nutrient medium. Microb Pathog50:114–122 [CrossRef][PubMed]
    [Google Scholar]
  7. Bialek S., Lavigne J. P., Chevalier J., Marcon E., Leflon-Guibout V., Davin A., Moreau R., Pagès J. M., Nicolas-Chanoine M. H.. ( 2010;). Membrane efflux and influx modulate both multidrug resistance and virulence of Klebsiella pneumoniae in a Caenorhabditis elegans model. Antimicrob Agents Chemother54:4373–4378 [CrossRef][PubMed]
    [Google Scholar]
  8. Boddicker J. D., Anderson R. A., Jagnow J., Clegg S.. ( 2006;). Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect Immun74:4590–4597 [CrossRef][PubMed]
    [Google Scholar]
  9. Boyd C. D., O’Toole G. A.. ( 2012;). Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems. Annu Rev Cell Dev Biol28:439–462 [CrossRef][PubMed]
    [Google Scholar]
  10. Bustin S. A.. ( 2010;). Why the need for qPCR publication guidelines?–The case for MIQE. Methods50:217–226 [CrossRef][PubMed]
    [Google Scholar]
  11. Cherepanov P. P., Wackernagel W.. ( 1995;). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene158:9–14 [CrossRef][PubMed]
    [Google Scholar]
  12. CLSI( 2013;). Performance Standards for Antimicrobial Susceptibility Testing; 23rd Informational Supplement M100–S23. Wayne, PA: Clinical and Laboratory Standards Institute;
  13. Cruz D. P., Huertas M. G., Lozano M., Zárate L., Zambrano M. M.. ( 2012;). Comparative analysis of diguanylate cyclase and phosphodiesterase genes in Klebsiella pneumoniae . BMC Microbiol12:139 [CrossRef][PubMed]
    [Google Scholar]
  14. Daims H., Lücker S., Wagner M.. ( 2006;). daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol8:200–213 [CrossRef][PubMed]
    [Google Scholar]
  15. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  16. Di Martino P., Cafferini N., Joly B., Darfeuille-Michaud A.. ( 2003;). Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res Microbiol154:9–16 [CrossRef][PubMed]
    [Google Scholar]
  17. Fuursted K., Schøler L., Hansen F., Dam K., Bojer M. S., Hammerum A. M., Dagnæs-Hansen F., Olsen A., Jasemian Y., Struve C.. ( 2012;). Virulence of a Klebsiella pneumoniae strain carrying the New Delhi metallo-beta-lactamase-1 (NDM-1). Microbes Infect14:155–158 [CrossRef][PubMed]
    [Google Scholar]
  18. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol177:4121–4130[PubMed]
    [Google Scholar]
  19. Harrison J. J., Stremick C. A., Turner R. J., Allan N. D., Olson M. E., Ceri H.. ( 2010;). Microtiter susceptibility testing of microbes growing on peg lids: a miniaturized biofilm model for high-throughput screening. Nat Protoc5:1236–1254 [CrossRef][PubMed]
    [Google Scholar]
  20. Heydorn A., Ersbøll B. K., Hentzer M., Parsek M. R., Givskov M., Molin S.. ( 2000;). Experimental reproducibility in flow-chamber biofilms. Microbiology146:2409–2415[PubMed]
    [Google Scholar]
  21. Høiby N., Ciofu O., Johansen H. K., Song Z. J., Moser C., Jensen P. O., Molin S., Givskov M., Tolker-Nielsen T., Bjarnsholt T.. ( 2011;). The clinical impact of bacterial biofilms. Int J Oral Sci3:55–65 [CrossRef][PubMed]
    [Google Scholar]
  22. Johnson J. G., Clegg S.. ( 2010;). Role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae . J Bacteriol192:3944–3950 [CrossRef][PubMed]
    [Google Scholar]
  23. Johnson J. G., Murphy C. N., Sippy J., Johnson T. J., Clegg S.. ( 2011;). Type 3 fimbriae and biofilm formation are regulated by the transcriptional regulators MrkHI in Klebsiella pneumoniae . J Bacteriol193:3453–3460 [CrossRef][PubMed]
    [Google Scholar]
  24. Khan W., Bernier S. P., Kuchma S. L., Hammond J. H., Hasan F., O’Toole G. A.. ( 2010;). Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol13:207–212[PubMed]
    [Google Scholar]
  25. Kostakioti M., Hadjifrangiskou M., Hultgren S. J.. ( 2013;). Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med3:a010306 [CrossRef][PubMed]
    [Google Scholar]
  26. Langstraat J., Bohse M., Clegg S.. ( 2001;). Type 3 fimbrial shaft (MrkA) of Klebsiella pneumoniae, but not the fimbrial adhesin (MrkD), facilitates biofilm formation. Infect Immun69:5805–5812 [CrossRef][PubMed]
    [Google Scholar]
  27. Laurentin A., Edwards C. A.. ( 2003;). A microtiter modification of the anthrone-sulfuric acid colorimetric assay for glucose-based carbohydrates. Anal Biochem315:143–145 [CrossRef][PubMed]
    [Google Scholar]
  28. Li W., He Z. G.. ( 2012;). LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis . Nucleic Acids Res40:11292–11307 [CrossRef][PubMed]
    [Google Scholar]
  29. Malone J. G., Jaeger T., Spangler C., Ritz D., Spang A., Arrieumerlou C., Kaever V., Landmann R., Jenal U.. ( 2010;). YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa . PLoS Pathog6:e1000804 [CrossRef][PubMed]
    [Google Scholar]
  30. Malone J. G., Jaeger T., Manfredi P., Dötsch A., Blanka A., Bos R., Cornelis G. R., Häussler S., Jenal U.. ( 2012;). The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. PLoS Pathog8:e1002760 [CrossRef][PubMed]
    [Google Scholar]
  31. Morgan J. L., McNamara J. T., Zimmer J.. ( 2014;). Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol21:489–496 [CrossRef][PubMed]
    [Google Scholar]
  32. Musafer H. K., Kuchma S. L., Naimie A. A., Schwartzman J. D., Al-Mathkhury H. J., O’Toole G. A.. ( 2014;). Investigating the link between imipenem resistance and biofilm formation by Pseudomonas aeruginosa . Microb Ecol68:111–120 [CrossRef][PubMed]
    [Google Scholar]
  33. O’Toole G. A., Kolter R.. ( 1998;). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol28:449–461 [CrossRef][PubMed]
    [Google Scholar]
  34. Ordax M., Marco-Noales E., López M. M., Biosca E. G.. ( 2010;). Exopolysaccharides favor the survival of Erwinia amylovora under copper stress through different strategies. Res Microbiol161:549–555 [CrossRef][PubMed]
    [Google Scholar]
  35. Pan Y. J., Lin T. L., Chen Y. H., Hsu C. R., Hsieh P. F., Wu M. C., Wang J. T.. ( 2013;). Capsular types of Klebsiella pneumoniae revisited by wzc sequencing. PLoS ONE8:e80670 [CrossRef][PubMed]
    [Google Scholar]
  36. Pfaffl M. W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res29:e45 [CrossRef][PubMed]
    [Google Scholar]
  37. Podschun R., Ullmann U.. ( 1998;). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev11:589–603[PubMed]
    [Google Scholar]
  38. Raterman E. L., Shapiro D. D., Stevens D. J., Schwartz K. J., Welch R. A.. ( 2013;). Genetic analysis of the role of yfiR in the ability of Escherichia coli CFT073 to control cellular cyclic dimeric GMP levels and to persist in the urinary tract. Infect Immun81:3089–3098 [CrossRef][PubMed]
    [Google Scholar]
  39. Raunkjær K., Hvitved-Jacobsen T., Nielsen P. H.. ( 1994;). Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res28:251–262 [CrossRef]
    [Google Scholar]
  40. Rendueles O., Kaplan J. B., Ghigo J. M.. ( 2013;). Antibiofilm polysaccharides. Environ Microbiol15:334–346 [CrossRef][PubMed]
    [Google Scholar]
  41. Römling U., Galperin M. Y., Gomelsky M.. ( 2013;). Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev77:1–52 [CrossRef][PubMed]
    [Google Scholar]
  42. Ross P., Mayer R., Benziman M.. ( 1991;). Cellulose biosynthesis and function in bacteria. Microbiol Rev55:35–58[PubMed]
    [Google Scholar]
  43. Ryjenkov D. A., Simm R., Römling U., Gomelsky M.. ( 2006;). The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem281:30310–30314 [CrossRef][PubMed]
    [Google Scholar]
  44. Singla S., Harjai K., Chhibber S.. ( 2013;). Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different antibiotics. J Antibiot (Tokyo)66:61–66 [CrossRef][PubMed]
    [Google Scholar]
  45. Solano C., García B., Valle J., Berasain C., Ghigo J. M., Gamazo C., Lasa I.. ( 2002;). Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol43:793–808 [CrossRef][PubMed]
    [Google Scholar]
  46. Srinivasan V. B., Vaidyanathan V., Mondal A., Venkataramaiah M., Rajamohan G.. ( 2012;). Functional characterization of a novel Mn2+ dependent protein serine/threonine kinase KpnK, produced by Klebsiella pneumoniae strain MGH78578. FEBS Lett586:3778–3786 [CrossRef][PubMed]
    [Google Scholar]
  47. Suescún A. V., Cubillos J. R., Zambrano M. M.. ( 2006;). [Genes involved in fimbrial biogenesis affect biofilm formation in Klebsiella pneumoniae]. Biomedica26:528–537[PubMed][CrossRef]
    [Google Scholar]
  48. Van Acker H., Van Dijck P., Coenye T.. ( 2014;). Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol22:326–333 [CrossRef][PubMed]
    [Google Scholar]
  49. Wilksch J. J., Yang J., Clements A., Gabbe J. L., Short K. R., Cao H., Cavaliere R., James C. E., Whitchurch C. B.. & other authors ( 2011;). MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog7:e1002204 [CrossRef][PubMed]
    [Google Scholar]
  50. Zogaj X., Bokranz W., Nimtz M., Römling U.. ( 2003;). Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun71:4151–4158 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081992-0
Loading
/content/journal/micro/10.1099/mic.0.081992-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error