Cytosine chemoreceptor McpC in F1 also detects nicotinic acid Free

Abstract

Soil bacteria are generally capable of growth on a wide range of organic chemicals, and pseudomonads are particularly adept at utilizing aromatic compounds. Pseudomonads are motile bacteria that are capable of sensing a wide range of chemicals, using both energy taxis and chemotaxis. Whilst the identification of specific chemicals detected by the ≥26 chemoreceptors encoded in genomes is ongoing, the functions of only a limited number of chemoreceptors have been revealed to date. We report here that McpC, a methyl-accepting chemotaxis protein in F1 that was previously shown to function as a receptor for cytosine, was also responsible for the chemotactic response to the carboxylated pyridine nicotinic acid.

Funding
This study was supported by the:
  • National Science Foundation (Award MCB0919930)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081968-0
2014-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2661.html?itemId=/content/journal/micro/10.1099/mic.0.081968-0&mimeType=html&fmt=ahah

References

  1. Alexander R. P., Zhulin I. B. ( 2007). Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. Proc Natl Acad Sci U S A 104:2885–2890 [View Article][PubMed]
    [Google Scholar]
  2. Alexandre G. ( 2010). Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors. Microbiology 156:2283–2293 [View Article][PubMed]
    [Google Scholar]
  3. Alvarez-Ortega C., Harwood C. S. ( 2007). Identification of a malate chemoreceptor in Pseudomonas aeruginosa by screening for chemotaxis defects in an energy taxis-deficient mutant. Appl Environ Microbiol 73:7793–7795 [View Article][PubMed]
    [Google Scholar]
  4. Anantharaman V., Aravind L. ( 2000). Cache – a signaling domain common to animal Ca2+-channel subunits and a class of prokaryotic chemotaxis receptors. Trends Biochem Sci 25:535–537 [View Article][PubMed]
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) ( 1993). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  6. Bergthorsson U., Roth J. R. ( 2005). Natural isolates of Salmonella enterica serovar Dublin carry a single nadA missense mutation. J Bacteriol 187:400–403 [View Article][PubMed]
    [Google Scholar]
  7. Cheung J., Hendrickson W. A. ( 2010). Sensor domains of two-component regulatory systems. Curr Opin Microbiol 13:116–123 [View Article][PubMed]
    [Google Scholar]
  8. Davis R. W., Botstein D., Roth J. R. ( 1980). Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  9. Di Stefano M., Conforti L. ( 2013). Diversification of NAD biological role: the importance of location. FEBS J 280:4711–4728 [View Article][PubMed]
    [Google Scholar]
  10. Ditty J. L., Williams K. M., Keller M. M., Chen G. Y., Liu X., Parales R. E. ( 2013). Integrating grant-funded research into the undergraduate biology curriculum using IMG-ACT. Biochem Mol Biol Educ 41:16–23 [View Article][PubMed]
    [Google Scholar]
  11. Fetzner S. ( 1998). Bacterial degradatoin of pyridine, indole, quinoline, and their derivatives under different redox conditions. Appl Microbiol Biotechnol 49:237–250 [View Article]
    [Google Scholar]
  12. Figurski D. H., Helinski D. R. ( 1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652 [View Article][PubMed]
    [Google Scholar]
  13. Finette B. A., Subramanian V., Gibson D. T. ( 1984). Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. J Bacteriol 160:1003–1009[PubMed]
    [Google Scholar]
  14. Finn R. D., Bateman A., Clements J., Coggill P., Eberhardt R. Y., Eddy S. R., Heger A., Hetherington K., Holm L. & other authors ( 2014). Pfam: the protein families database. Nucleic Acids Res 42:Database issueD222–D230 [View Article][PubMed]
    [Google Scholar]
  15. Gibson D. T., Hensley M., Yoshioka H., Mabry T. J. ( 1970). Oxidative degradation of aromatic hydrocarbons by microorganisms. III. Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry 9:1626–1630 [View Article][PubMed]
    [Google Scholar]
  16. Grimm A. C., Harwood C. S. ( 1997). Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl Environ Microbiol 63:4111–4115[PubMed]
    [Google Scholar]
  17. Grimm A. C., Harwood C. S. ( 1999). NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J Bacteriol 181:3310–3316[PubMed]
    [Google Scholar]
  18. Harwood C. S., Nichols N. N., Kim M.-K., Ditty J. L., Parales R. E. ( 1994). Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176:6479–6488[PubMed]
    [Google Scholar]
  19. Hazelbauer G. L., Falke J. J., Parkinson J. S. ( 2008). Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33:9–19 [View Article][PubMed]
    [Google Scholar]
  20. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. ( 1998). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86 [View Article][PubMed]
    [Google Scholar]
  21. Iwaki H., Muraki T., Ishihara S., Hasegawa Y., Rankin K. N., Sulea T., Boyd J., Lau P. C. K. ( 2007). Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. J Bacteriol 189:3502–3514 [View Article][PubMed]
    [Google Scholar]
  22. Jiménez J. I., Canales A., Jiménez-Barbero J., Ginalski K., Rychlewski L., García J. L., Díaz E. ( 2008). Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proc Natl Acad Sci U S A 105:11329–11334 [View Article][PubMed]
    [Google Scholar]
  23. Jiménez J. I., Nogales J., García J. L., Díaz E. ( 2010). A genomic view of the catabolism of aromatic compounds in Pseudomonas. Handbook of Hydrocarbon and Lipid Microbiology1297–1554 Timmis K. N. Berlin: Springer; [View Article]
    [Google Scholar]
  24. Jiménez J. I., Juárez J. F., García J. L., Díaz E. ( 2011). A finely tuned regulatory circuit of the nicotinic acid degradation pathway in Pseudomonas putida. Environ Microbiol 13:1718–1732 [View Article][PubMed]
    [Google Scholar]
  25. Kaiser J. P., Feng Y., Bollag J. M. ( 1996). Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol Rev 60:483–498[PubMed]
    [Google Scholar]
  26. Kato J., Kim H.-E., Takiguchi N., Kuroda A., Ohtake H. ( 2008). Pseudomonas aeruginosa as a model microorganism for investigation of chemotactic behaviors in ecosystem. J Biosci Bioeng 106:1–7 [View Article][PubMed]
    [Google Scholar]
  27. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. ( 1988). Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197 [View Article][PubMed]
    [Google Scholar]
  28. Lacal J., García-Fontana C., Muñoz-Martínez F., Ramos J. L., Krell T. ( 2010). Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ Microbiol 12:2873–2884 [View Article][PubMed]
    [Google Scholar]
  29. Lacal J., Muñoz-Martínez F., Reyes-Darías J. A., Duque E., Matilla M., Segura A., Calvo J. J., Jímenez-Sánchez C., Krell T., Ramos J. L. ( 2011). Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13:1733–1744 [View Article][PubMed]
    [Google Scholar]
  30. Li M., Hazelbauer G. L. ( 2006). The carboxyl-terminal linker is important for chemoreceptor function. Mol Microbiol 60:469–479 [View Article][PubMed]
    [Google Scholar]
  31. Liu, X.( 2009). Chemotaxis to pyrimidines and s-triazines in Pseudomonas and Escherichia coli. University of California; Davis, CA, USA:
    [Google Scholar]
  32. Liu X., Wood P. L., Parales J. V., Parales R. E. ( 2009). Chemotaxis to pyrimidines and identification of a cytosine chemoreceptor in Pseudomonas putida. J Bacteriol 191:2909–2916 [View Article][PubMed]
    [Google Scholar]
  33. Luu R. A., Schneider B. J., Ho C. C., Nesteryuk V., Ngwesse S. E., Liu X., Parales J. V., Ditty J. L., Parales R. E. ( 2013). Taxis of Pseudomonas putida F1 toward phenylacetic acid is by mediated by the energy taxis receptor Aer2. Appl Environ Microbiol 79:2416–2423 [View Article][PubMed]
    [Google Scholar]
  34. Oku S., Komatsu A., Tajima T., Nakashimada Y., Kato J. ( 2012). Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization. Microbes Environ 27:462–469 [View Article][PubMed]
    [Google Scholar]
  35. Parales R. E., Ditty J. L., Harwood C. S. ( 2000). Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104 [View Article][PubMed]
    [Google Scholar]
  36. Parales R. E., Ferrandez A., Harwood C. S. ( 2004). Chemotaxis in Pseudomonads. Pseudomonas. Volume I: Genomics, Life Style and Molecular Architecture793–815 Ramos J.-L. New York: Kluwer; [View Article]
    [Google Scholar]
  37. Parales R. E., Luu R. A., Chen G. Y., Liu X., Wu V., Lin P., Hughes J. G., Nesteryuk V., Parales J. V., Ditty J. L. ( 2013). Pseudomonas putida F1 has multiple chemoreceptors with overlapping specificity for organic acids. Microbiology 159:1086–1096 [View Article][PubMed]
    [Google Scholar]
  38. Parkinson J. S. ( 2007). A “bucket of light” for viewing bacterial colonies in soft agar. Methods Enzymol 423:432–435 [View Article][PubMed]
    [Google Scholar]
  39. Paternoster T., Défago G., Duffy B., Gessler C., Pertot I. ( 2010). Selection of a biocontrol agent based on a potential mechanism of action: degradation of nicotinic acid, a growth factor essential for Erwinia amylovora. Int Microbiol 13:195–206[PubMed]
    [Google Scholar]
  40. Prunier A.-L., Schuch R., Fernández R. E., Maurelli A. T. ( 2007). Genetic structure of the nadA and nadB antivirulence loci in Shigella spp.. J Bacteriol 189:6482–6486 [View Article][PubMed]
    [Google Scholar]
  41. Sambrook J., Fritch E. F., Maniatis T. ( 1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Sampedro I., Parales R. E., Krell T., Hill J. E. ( 2014). Pseudomonas chemotaxis. FEMS Microbiol Rev [View Article][PubMed]
    [Google Scholar]
  43. Sarand I., Osterberg S., Holmqvist S., Holmfeldt P., Skärfstad E., Parales R. E., Shingler V. ( 2008). Metabolism-dependent taxis towards (methyl)phenols is coupled through the most abundant of three polar localized Aer-like proteins of Pseudomonas putida. Environ Microbiol 10:1320–1334 [View Article][PubMed]
    [Google Scholar]
  44. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology (N Y) 1:784–789 [View Article]
    [Google Scholar]
  45. Sorci L., Blaby I. K., Rodionova I. A., De Ingeniis J., Tkachenko S., de Crécy-Lagard V., Osterman A. L. ( 2013). Quinolinate salvage and insights for targeting NAD biosynthesis in group A streptococci. J Bacteriol 195:726–732 [View Article][PubMed]
    [Google Scholar]
  46. Stanier R. Y., Palleroni N. J., Doudoroff M. ( 1966). The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271 [View Article][PubMed]
    [Google Scholar]
  47. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. & other authors ( 2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [View Article][PubMed]
    [Google Scholar]
  48. Taguchi K., Fukutomi H., Kuroda A., Kato J., Ohtake H. ( 1997). Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology 143:3223–3229 [View Article][PubMed]
    [Google Scholar]
  49. Tang H., Yao Y., Wang L., Yu H., Ren Y., Wu G., Xu P. ( 2012). Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation. Sci Rep 2:377 [View Article][PubMed]
    [Google Scholar]
  50. Vangnai A. S., Takeuchi K., Oku S., Kataoka N., Nitisakulkan T., Tajima T., Kato J. ( 2013). Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 79:7241–7248 [View Article][PubMed]
    [Google Scholar]
  51. Wadhams G. H., Armitage J. P. ( 2004). Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5:1024–1037 [View Article][PubMed]
    [Google Scholar]
  52. Webb B. A., Hildreth S., Helm R. F., Scharf B. E. ( 2014). Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing. Appl Environ Microbiol 80:3404–3415 [View Article][PubMed]
    [Google Scholar]
  53. White A. K., Metcalf W. W. ( 2004). The htx and ptx operons of Pseudomonas stutzeri WM88 are new members of the Phoregulon. J Bacteriol 186:5876–5882 [View Article][PubMed]
    [Google Scholar]
  54. Zhang Z., Hendrickson W. A. ( 2010). Structural characterization of the predominant family of histidine kinase sensor domains. J Mol Biol 400:335–353 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081968-0
Loading
/content/journal/micro/10.1099/mic.0.081968-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed