1887

Abstract

Poly-γ-glutamic acid (γ-PGA) is a naturally occurring biopolymer made up of repeating units of -glutamic acid, -glutamic acid or both. γ-PGA can exhibit different properties (conformational states, enantiomeric properties and molecular mass). Owing to its biodegradable, non-toxic and non-immunogenic properties, it has been used successfully in the food, medical and wastewater industries. Amongst other novel applications, it has the potential to be used for protein crystallization, as a soft tissue adhesive and a non-viral vector for safe gene delivery. This review focuses on the production, properties and applications of γ-PGA. Each application of γ-PGA utilizes specific properties attributed to various forms of γ-PGA. As a result of its growing applications, more strains of bacteria need to be investigated for γ-PGA production to obtain high yields of γ-PGA with different properties. Many medical applications (especially drug delivery) have exploited α-PGA. As γ-PGA is essentially different from α-PGA (i.e. it does not involve a chemical modification step and is not susceptible to proteases), it could be better utilized for such medical applications. Optimization of γ-PGA with respect to cost of production, molecular mass and conformational/enantiomeric properties is a major step in making its application practical. Analyses of γ-PGA production and knowledge of the enzymes and genes involved in γ-PGA production will not only help increase productivity whilst reducing the cost of production, but also help to understand the mechanism by which γ-PGA is effective in numerous applications.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081448-0
2015-01-01
2019-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/1.html?itemId=/content/journal/micro/10.1099/mic.0.081448-0&mimeType=html&fmt=ahah

References

  1. Akagi T. , Baba M. , Akashi M. . ( 2007; ). Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. . Polymer (Guildf) 48:, 6729–6747. [CrossRef]
    [Google Scholar]
  2. Ashiuchi M. , Misono H. . ( 2002; ). Biochemistry and molecular genetics of poly-γ-glutamate synthesis. . Appl Microbiol Biotechnol 59:, 9–14. [CrossRef] [PubMed]
    [Google Scholar]
  3. Ashiuchi M. , Tani K. , Soda K. , Misono H. . ( 1998; ). Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-γ-glutamate. . J Biochem 123:, 1156–1163. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ashiuchi M. , Soda K. , Misono H. . ( 1999a; ). A poly-γ-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells. . Biochem Biophys Res Commun 263:, 6–12. [CrossRef] [PubMed]
    [Google Scholar]
  5. Ashiuchi M. , Soda K. , Misono H. . ( 1999b; ). Characterization of yrpC gene product of Bacillus subtilis IFO 3336 as glutamate racemase isozyme. . Biosci Biotechnol Biochem 63:, 792–798. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ashiuchi M. , Kamei T. , Baek D. H. , Shin S. Y. , Sung M. H. , Soda K. , Yagi T. , Misono H. . ( 2001a; ). Isolation of Bacillus subtilis (chungkookjang), a poly-γ-glutamate producer with high genetic competence. . Appl Microbiol Biotechnol 57:, 764–769. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ashiuchi M. , Nawa C. , Kamei T. , Song J. J. , Hong S. P. , Sung M. H. , Soda K. , Yagi T. , Misono H. . ( 2001b; ). Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of Bacillus subtilis . . Eur J Biochem 268:, 5321–5328. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ashiuchi M. , Kamei T. , Misono H. . ( 2003a; ). Poly-gamma-glutamate synthetase of Bacillus subtilis . . J Mol Catal B Enzym 23:, 101–106. [CrossRef]
    [Google Scholar]
  9. Ashiuchi M. , Kuwana E. , Komatsu K. , Soda K. , Misono H. . ( 2003b; ). Differences in effects on DNA gyrase activity between two glutamate racemases of Bacillus subtilis, the poly-γ-glutamate synthesis-linking Glr enzyme and the YrpC (MurI) isozyme. . FEMS Microbiol Lett 223:, 221–225. [CrossRef] [PubMed]
    [Google Scholar]
  10. Ashiuchi M. , Shimanouchi K. , Nakamura H. , Kamei T. , Soda K. , Park C. , Sung M. H. , Misono H. . ( 2004; ). Enzymatic synthesis of high-molecular-mass poly-γ-glutamate and regulation of its stereochemistry. . Appl Environ Microbiol 70:, 4249–4255. [CrossRef] [PubMed]
    [Google Scholar]
  11. Ashiuchi M. , Shimanouchi K. , Horiuchi T. , Kamei T. , Misono H. . ( 2006; ). Genetically engineered poly-γ-glutamate producer from Bacillus subtilis ISW1214. . Biosci Biotechnol Biochem 70:, 1794–1797. [CrossRef] [PubMed]
    [Google Scholar]
  12. Bajaj I. B. , Singhal R. S. . ( 2009; ). Enhanced production of poly(γ-glutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors. . Appl Biochem Biotechnol 159:, 133–141. [CrossRef] [PubMed]
    [Google Scholar]
  13. Bajaj I. B. , Singhal R. S. . ( 2011; ). Flocculation properties of poly(γ-glutamic acid) produced from Bacillus subtilis isolate. . Food Bioprocess Technol 4:, 745–752. [CrossRef]
    [Google Scholar]
  14. Bajaj I. B. , Lele S. S. , Singhal R. S. . ( 2008; ). Enhanced production of poly (γ-glutamic acid) from Bacillus licheniformis NCIM 2324 in solid state fermentation. . J Ind Microbiol Biotechnol 35:, 1581–1586. [CrossRef] [PubMed]
    [Google Scholar]
  15. Bajaj I. B. , Lele S. S. , Singhal R. S. . ( 2009; ). A statistical approach to optimization of fermentative production of poly(γ-glutamic acid) from Bacillus licheniformis NCIM 2324. . Bioresour Technol 100:, 826–832. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ben-Zur N. , Goldman D. M. . ( 2007; ). γ-Poly glutamic acid: a novel peptide for skin care. . Cosmetics Toiletries 122:, 65–74.
    [Google Scholar]
  17. Bhat A. . ( 2012; ). Bacterial production of poly-γ-glutamic acid and evaluation of its effect on the viability of probiotic microorganisms. PhD. Thesis. University of Wolverhampton: UK. . http://wlv.openrepository.com/wlv/handle/2436/241854
  18. Bhat A. R. , Irorere V. U. , Bartlett T. , Hill D. , Kedia G. , Morris M. R. , Charalampopoulos D. , Radecka I. . ( 2013; ). Bacillus subtilis natto: a non-toxic source of poly-γ-glutamic acid that could be used as a cryoprotectant for probiotic bacteria. . AMB Express 3:, 36. [CrossRef] [PubMed]
    [Google Scholar]
  19. Bhattacharyya D. , Hestekin J. A. , Brushaber P. , Cullen L. , Bachas L. G. , Sikdar S. K. . ( 1998; ). Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity. . J Membr Sci 141:, 121–135. [CrossRef]
    [Google Scholar]
  20. Bhunia B. , Mukhopadhy D. , Goswami S. , Mandal T. , Dey A. . ( 2012; ). Improved production, characterization and flocculation properties of poly(γ)-glutamic acid produced from Bacillus subtilis . . J Biochem Technol 3:, 389–394.
    [Google Scholar]
  21. Birrer G. A. , Cromwick A.-M. , Gross R. A. . ( 1994; ). γ-Poly(glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. . Int J Biol Macromol 16:, 265–275. [CrossRef] [PubMed]
    [Google Scholar]
  22. Bodnár M. , Kjøniksen A.-L. , Molnár R. M. , Hartmann J. F. , Daróczi L. , Nyström B. , Borbély J. . ( 2008; ). Nanoparticles formed by complexation of poly-gamma-glutamic acid with lead ions. . J Hazard Mater 153:, 1185–1192.[PubMed]
    [Google Scholar]
  23. Borbely M. , Nagasaki Y. , Borbély J. , Fan K. , Bhogle A. , Sevoian M. . ( 1994; ). Biosynthesis and chemical modification of poly(γ-glutamic acid). . Polym Bull 32:, 127–132. [CrossRef]
    [Google Scholar]
  24. Bovarnick M. . ( 1942; ). The formation of extracellular d (–) glutamic acid polypeptide by Bacillus subtilis . . J Biol Chem 145:, 415–424.
    [Google Scholar]
  25. Buescher J. M. , Margaritis A. M. . ( 2007; ). Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. . Crit Rev Biotechnol 27:, 1–19. [CrossRef] [PubMed]
    [Google Scholar]
  26. Cachat E. , Barker M. , Read T. D. , Priest F. G. . ( 2008; ). A Bacillus thuringiensis strain producing a polyglutamate capsule resembling that of Bacillus anthracis . . FEMS Microbiol Lett 285:, 220–226. [CrossRef] [PubMed]
    [Google Scholar]
  27. Candela T. , Fouet A. . ( 2005; ). Bacillus anthracis CapD, belonging to the γ-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. . Mol Microbiol 57:, 717–726. [CrossRef] [PubMed]
    [Google Scholar]
  28. Candela T. , Fouet A. . ( 2006; ). Poly-gamma-glutamate in bacteria. . Mol Microbiol 60:, 1091–1098. [CrossRef] [PubMed]
    [Google Scholar]
  29. Candela T. , Mock M. , Fouet A. . ( 2005; ). CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. . J Bacteriol 187:, 7765–7772. [CrossRef] [PubMed]
    [Google Scholar]
  30. Candela T. , Moya M. , Haustant M. , Fouet A. . ( 2009; ). Fusobacterium nucleatum, the first Gram-negative bacterium demonstrated to produce polyglutamate. . Can J Microbiol 55:, 627–632.[CrossRef]
    [Google Scholar]
  31. Candela T. , Balomenou S. , Aucher W. , Bouriotis V. , Simore J. P. , Fouet A. , Boneca I. G. . ( 2014; ). N-acetylglucosamine deacetylases modulate the anchoring of the gamma-glutamyl capsule to the cell wall of Bacillus anthracis . . Microb Drug Resist 20:, 222–230. [CrossRef] [PubMed]
    [Google Scholar]
  32. Cao M. , Song C. , Jin Y. , Liu L. , Liu J. , Xie H. , Guo W. , Wang S. . ( 2010; ). Synthesis of poly(γ-glutamic acid) and heterologous expression of pgsBCA genes. . J Mol Catal B Enzym 67:, 111–116. [CrossRef]
    [Google Scholar]
  33. Cao M. , Geng W. , Liu L. , Song C. , Xie H. , Guo W. , Jin Y. , Wang S. . ( 2011; ). Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. . Bioresour Technol 102:, 4251–4257. [CrossRef] [PubMed]
    [Google Scholar]
  34. Cao M. , Geng W. , Zhang W. , Sun J. , Wang S. , Feng J. , Zheng P. , Jiang A. , Song C. . ( 2013; ). Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA. . Microb Biotechnol 6:, 675–684.[PubMed]
    [Google Scholar]
  35. Chang J. , Zhong Z. , Xu H. , Yao Z. , Chen R. . ( 2013; ). Fabrication of poly(γ-glutamic acid)-coated Fe3O4 magnetic nanoparticles and their application in heavy metal removal. . Chin J Chem Eng 21:, 1244–1250. [CrossRef]
    [Google Scholar]
  36. Cheng C. , Asada Y. , Aaida T. . ( 1989; ). Production of γ-polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. . Agric Biol Chem 53:, 2369–2375. [CrossRef]
    [Google Scholar]
  37. Choi S. , Park J. , Yoon M. . ( 2004; ). Production of microbial biopolymer, poly γ-glutamic acid) by Bacillus subtilis BS 62. . Agric Chem Biotechnol 47:, 60–64.
    [Google Scholar]
  38. Cromwick A. M. , Gross R. A. . ( 1995a; ). Effect of manganese (II) on Bacillus licheniformis ATCC 9945A physiology and γ-poly(glutamic acid) formation. . Int J Biol Macromol 16:, 265–275.
    [Google Scholar]
  39. Cromwick A. M. , Gross R. A. . ( 1995b; ). Investigation by NMR of metabolic routes to bacterial γ-poly(glutamic acid) using 13C labelled citrate and glutamate as media carbon sources. . Can J Microbiol 41:, 902–909. [CrossRef]
    [Google Scholar]
  40. Do T. H. , Suzuki Y. , Abe N. , Kaneko J. , Itoh Y. , Kimura K. . ( 2011; ). Mutations suppressing the loss of DegQ function in Bacillus subtilis (natto) poly-γ-glutamate synthesis. . Appl Environ Microbiol 77:, 8249–8258. [CrossRef] [PubMed]
    [Google Scholar]
  41. Eddé B. , Rossier J. , Le Caer J. P. , Desbruyères E. , Gros F. , Denoulet P. . ( 1990; ). Posttranslational glutamylation of alpha-tubulin. . Science 247:, 83–85. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ezzell J. W. , Abshire T. G. , Panchal R. , Chabot D. , Bavari S. , Leffel E. K. , Purcell B. , Friedlander A. M. , Ribot W. J. . ( 2009; ). Association of Bacillus anthracis capsule with lethal toxin during experimental infection. . Infect Immun 77:, 749–755. [CrossRef] [PubMed]
    [Google Scholar]
  43. Feng J. , Gu Y. , Sun Y. , Han L. , Yang C. , Zhang W. , Cao M. , Song C. , Gao W. , Wang S. . ( 2014; ). Metabolic engineering of Bacillus amyloliquefaciens for poly-gamma-glutamic acid (γ-PGA) overproduction. . Microb Biotechnol 7:, 446–455. [CrossRef] [PubMed]
    [Google Scholar]
  44. Graciela P. C. , Francisco C. , Jordi J. B. , Sebastián M. G. . ( 2000; ). Biosynthesis and ultrasonic degradation of bacterial poly(γ-glutamic acid). . Biotechnol Bioeng 63:, 110–115.
    [Google Scholar]
  45. Hajdu I. , Bodnár M. , Csikós Z. , Wei S. , Daróczi L. , Kovács B. , Győri Z. , Tamás J. , Borbély J. . ( 2012; ). Combined nano-membrane technology for removal of lead ions. . J Membr Sci 409–410:, 44–53. [CrossRef]
    [Google Scholar]
  46. Hanby W. E. , Rydon H. N. . ( 1946; ). The capsular substance of Bacillus anthracis . . Biochem J 40:, 297–309.
    [Google Scholar]
  47. He L. M. , Neu M. P. , Vanderberg L. A. . ( 2000; ). Bacillus licheniformis γ-glutamyl exopolymer: physicochemical characterization and U(VI) interaction. . Environ Sci Technol 34:, 1694–1701. [CrossRef]
    [Google Scholar]
  48. Hezayen F. F. , Rehm B. H. , Tindall B. J. , Steinbüchel A. . ( 2001; ). Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). . Int J Syst Evol Microbiol 51:, 1133–1142. [CrossRef] [PubMed]
    [Google Scholar]
  49. Ho G. H. , Ho T. I. , Hsieh K. H. , Su Y. C. , Line P.-Y. , Yang J. , Yang K.-H. , Yang S.-C. . ( 2006; ). γ-Polyglutamic acid produced by Bacillus subtilis (natto): structural characteristics, chemical properties and biological functionalities. . J Chin Chem Soc Taip 53:, 1363–1384.[CrossRef]
    [Google Scholar]
  50. Ho G.-H. , Yang T.-H. , Yang J. . ( 2009; ). Dietary products comprising one or more of γ-polyglutamic acid (γ-PGA, H form) and γ-polyglutamates for use as nutrition supplements. US Patent 7,632,804 B2. .
  51. Hsieh C.-Y. , Tsai S.-P. , Wang D.-M. , Chang Y.-N. , Hsieh H.-J. . ( 2005; ). Preparation of γ-PGA/chitosan composite tissue engineering matrices. . Biomaterials 26:, 5617–5623. [CrossRef] [PubMed]
    [Google Scholar]
  52. Hu T. C. , Korczyńska J. , Smith D. K. , Brzozowski A. M. . ( 2008; ). High-molecular-weight polymers for protein crystallization: poly-γ-glutamic acid-based precipitants. . Acta Crystallogr D Biol Crystallogr 64:, 957–963. [CrossRef] [PubMed]
    [Google Scholar]
  53. Huang J. , Du Y. , Xu G. , Zhang H. , Zhu F. , Huang L. , Xu Z. . ( 2011; ). High yield and cost-effective production of poly(γ-glutamic acid) with Bacillus subtilis. . Eng Life Sci 11:, 291–297. [CrossRef]
    [Google Scholar]
  54. Inbaraj B. S. , Chen B. H. . ( 2012; ). In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles. . Int J Nanomedicine 7:, 4419–4432.[PubMed]
    [Google Scholar]
  55. Inbaraj B. S. , Chiu C. P. , Ho G. H. , Yang J. , Chen B. H. . ( 2006; ). Removal of cationic dyes from aqueous solution using an anionic poly-γ-glutamic acid-based adsorbent. . J Hazard Mater 137:, 226–234. [CrossRef] [PubMed]
    [Google Scholar]
  56. Inbaraj B. S. , Kao T. H. , Tsai T. Y. , Chiu C. P. , Kumar R. , Chen B. H. . ( 2011; ). The synthesis and characterization of poly(γ-glutamic acid)-coated magnetite nanoparticles and their effects on antibacterial activity and cytotoxicity. . Nanotechnology 22:, 075101. [CrossRef] [PubMed]
    [Google Scholar]
  57. Ivanovics G. , Bruckner V. . ( 1937a; ). Chemical and immunologic studies on the mechanism of anthrax infection and immunity. The chemical structure of capsule substance of anthrax bacilli and its identity with that of the B. mesentericus. Z. Immunitaetsforsc . 90:, 304–318.
    [Google Scholar]
  58. Ivanovics G. , Bruckner V. . ( 1937b; ). The chemical nature of the immuno-specific capsule substance of anthrax bacillus . . Naturwissenschaften 25:, 250.[CrossRef]
    [Google Scholar]
  59. Jagannath A. , Raju P. S. , Bawa A. S. . ( 2010; ). Comparative evaluation of bacterial cellulose (nata) as a cryoprotectant and carrier support during the freeze drying process of probiotic lactic acid bacteria. . LWT – Food Sci Technol 43:, 1197–1203. [CrossRef]
    [Google Scholar]
  60. Jian X. , Shouwen C. , Ziniu Y. . ( 2005; ). Optimization of process parameters for poly γ-glutamate production under solid state fermentation from Bacillus subtilis CCTCC202048. . Process Biochem 40:, 3075–3081. [CrossRef]
    [Google Scholar]
  61. Jung D.-Y. , Jung S. , Yun J.-S. , Kim J.-N. , Wee Y.-J. , Jang H.-G. , Ryu H.-W. . ( 2005; ). Influences of cultural medium component on the production of poly(γ-glutamic acid) by Bacillus sp. RKY3. . Biotechnol Bioprocess Eng 10:, 289–295. [CrossRef]
    [Google Scholar]
  62. Kada S. , Nanamiya H. , Kawamura F. , Horinouchi S. . ( 2004; ). Glr, a glutamate racemase, supplies d-glutamate to both peptidoglycan synthesis and poly-γ-glutamate production in γ-PGA-producing Bacillus subtilis . . FEMS Microbiol Lett 236:, 13–20.[PubMed]
    [Google Scholar]
  63. Kandler O. , König H. , Wiegel J. , Claus D. . ( 1983; ). Occurrence of poly-γ-d-glutamic acid and poly-α-l-glutamine in the genera Xanthobacter, Flexithrix, Sporosarcina and Planococcus . . Syst Appl Microbiol 4:, 34–41. [CrossRef] [PubMed]
    [Google Scholar]
  64. Kim T. W. , Lee T. Y. , Bae H. C. , Hahm J. H. , Kim Y. H. , Park C. , Kang T. H. , Kim C. J. , Sung M. H. , Poo H. . ( 2007; ). Oral administration of high molecular mass poly-γ-glutamate induces NK cell-mediated antitumor immunity. . J Immunol 179:, 775–780. [CrossRef] [PubMed]
    [Google Scholar]
  65. Kimura K. , Tran L. S. P. , Uchida I. , Itoh Y. . ( 2004; ). Characterization of Bacillus subtilis γ-glutamyltransferase and its involvement in the degradation of capsule poly-γ-glutamate. . Microbiology 150:, 4115–4123. [CrossRef] [PubMed]
    [Google Scholar]
  66. Ko Y. H. , Gross R. A. . ( 1998; ). Effects of glucose and glycerol on γ-poly(glutamic acid) formation by Bacillus licheniformis ATCC 9945a. . Biotechnol Bioeng 57:, 430–437. [CrossRef] [PubMed]
    [Google Scholar]
  67. Kocianova S. , Vuong C. , Yao Y. , Voyich J. M. , Fischer E. R. , DeLeo F. R. , Otto M. . ( 2005; ). Key role of poly-γ-dl-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis . . J Clin Invest 115:, 688–694. [CrossRef] [PubMed]
    [Google Scholar]
  68. Kubota H. , Nambu Y. , Endo T. . ( 1995; ). Convenient esterification of poly(γ-glutamic acid) produced by microorganism with alkyl halides and their thermal properties. . J Polym Sci A Polym Chem 33:, 85–88. [CrossRef]
    [Google Scholar]
  69. Kunioka M. , Goto A. . ( 1994; ). Biosynthesis of poly(γ-glutamic acid) from l-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. . Appl Microbiol Biotechnol 40:, 867–872. [CrossRef]
    [Google Scholar]
  70. Kurosaki T. , Kitahara T. , Fumoto S. , Nishida K. , Nakamura J. , Niidome T. , Kodama Y. , Nakagawa H. , To H. , Sasaki H. . ( 2009; ). Ternary complexes of pDNA, polyethylenimine, and γ-polyglutamic acid for gene delivery systems. . Biomaterials 30:, 2846–2853. [CrossRef] [PubMed]
    [Google Scholar]
  71. Li C. , Yu D.-F. , Newman R. A. , Cabral F. , Stephens L. C. , Hunter N. , Milas L. , Wallace S. . ( 1998; ). Complete regression of well-established tumors using a novel water-soluble poly(l-glutamic acid)–paclitaxel conjugate. . Cancer Res 58:, 2404–2409.[PubMed]
    [Google Scholar]
  72. Lim S. , Kim J. , Shim J. , Imm B. , Sung M. , Imm J. . ( 2012; ). Effect of poly-γ-glutamic acids (PGA) on oil uptake and sensory quality in doughnuts. . Food Sci Biotechnol 21:, 247–252. [CrossRef]
    [Google Scholar]
  73. Liu J. , He D. , Li X. Z. , Gao S. , Wu H. , Liu W. , Gao X. , Zhou T. . ( 2010; ). γ-Polyglutamic acid (γ-PGA) produced by Bacillus amyloliquefaciens C06 promoting its colonization on fruit surface. . Int J Food Microbiol 142:, 190–197. [CrossRef] [PubMed]
    [Google Scholar]
  74. Mabrouk M. , Abou-Zeid D. , Sabra W. . ( 2012; ). Application of Plackett–Burman experimental design to evaluate nutritional requirements for poly(γ-glutamic acid) production in batch fermentation by Bacillus licheniformis A13. . Afr J Appl Microb Res 2:, 6–18.[CrossRef]
    [Google Scholar]
  75. Makino S. , Uchida I. , Terakado N. , Sasakawa C. , Yoshikawa M. . ( 1989; ). Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis . . J Bacteriol 171:, 722–730.[PubMed]
    [Google Scholar]
  76. McLean R. J. , Beauchemin D. , Clapham L. , Beveridge T. J. . ( 1990; ). Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. . Appl Environ Microbiol 56:, 3671–3677.[PubMed]
    [Google Scholar]
  77. Mesnage S. , Tosi-Couture E. , Gounon P. , Mock M. , Fouet A. . ( 1998; ). The capsule and S-layer: two independent and yet compatible macromolecular structures in Bacillus anthracis . . J Bacteriol 180:, 52–58.[PubMed]
    [Google Scholar]
  78. Mitsuiki M. , Mizuno A. , Tanimoto H. , Motoki M. . ( 1998; ). Relationship between the antifreeze activities and the chemical structures of oligo- and poly(glutamic acid)s. . J Agric Food Chem 46:, 891–895. [CrossRef]
    [Google Scholar]
  79. Morelli C. F. , Calvio C. , Biagiotti M. , Speranza G. . ( 2014; ). pH-dependent hydrolase, glutaminase, transpeptidase and autotranspeptidase activities of Bacillus subtilis γ-glutamyltransferase. . FEBS J 281:, 232–245. [CrossRef] [PubMed]
    [Google Scholar]
  80. Ogata M. , Hidari K. I. , Murata T. , Shimada S. , Kozaki W. , Park E. Y. , Suzuki T. , Usui T. . ( 2009; ). Chemoenzymatic synthesis of sialoglycopolypeptides as glycomimetics to block infection by avian and human influenza viruses. . Bioconjug Chem 20:, 538–549. [CrossRef] [PubMed]
    [Google Scholar]
  81. Ohsawa T. , Tsukahara K. , Ogura M. . ( 2009; ). Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in γ-poly-glutamic acid synthesis. . Biosci Biotechnol Biochem 73:, 2096–2102. [CrossRef] [PubMed]
    [Google Scholar]
  82. Osera C. , Amati G. , Calvio C. , Galizzi A. . ( 2009; ). SwrAA activates poly-γ-glutamate synthesis in addition to swarming in Bacillus subtilis . . Microbiology 155:, 2282–2287. [CrossRef] [PubMed]
    [Google Scholar]
  83. Otani Y. , Tabata Y. , Ikada Y. . ( 1999; ). Sealing effect of rapidly curable gelatin-poly(l-glutamic acid) hydrogel glue on lung air leak. . Ann Thorac Surg 67:, 922–926. [CrossRef] [PubMed]
    [Google Scholar]
  84. Park C. , Choi J.-C. , Choi Y.-H. , Nakamura H. , Shimanouchi K. , Horiuchi T. , Misono H. , Sewaki T. , Soda K. . & other authors ( 2005; ). Synthesis of super-high-molecular-weight poly-γ-glutamic acid by Bacillus subtilis subsp. chungkookjang . . J Mol Catal B Enzym 35:, 128–133. [CrossRef]
    [Google Scholar]
  85. Pérez-Camero G. , Congregado F. , Bou J. J. , Muñoz-Guerra S. . ( 1999; ). Biosynthesis and ultrasonic degradation of bacterial poly(γ-glutamic acid). . Biotechnol Bioeng 63:, 110–115. [CrossRef] [PubMed]
    [Google Scholar]
  86. Rehm B. . ( 2009; ). Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives. Caister:: Horizon Scientific Press;.
    [Google Scholar]
  87. Richard A. , Margaritis A. . ( 2003; ). Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis . . Biotechnol Bioeng 82:, 299–305. [CrossRef] [PubMed]
    [Google Scholar]
  88. Richard A. , Margaritis A. . ( 2006; ). Kinetics of molecular weight reduction of poly(glutamic acid) by in situ depolymerization in cell-free broth of Bacillus subtilis . . Biochem Eng J 30:, 303–307. [CrossRef]
    [Google Scholar]
  89. Ryu M. , Nakazawa T. , Akagi T. , Tanaka T. , Watanabe R. , Yasuda M. , Himori N. , Maruyama K. , Yamashita T. . & other authors ( 2011; ). Suppression of phagocytic cells in retinal disorders using amphiphilic poly(γ-glutamic acid) nanoparticles containing dexamethasone. . J Control Release 151:, 65–73. [CrossRef] [PubMed]
    [Google Scholar]
  90. Sakai K. , Sonoda C. , Murase K. . ( 2000; ). Bitterness relieving agent. JP Patent WO0021390. .
  91. Sato M. , Kanie K. , Soda K. , Yokoigawa K. . ( 2008; ). Suppressive effect of poly-γ-glutamate on SOS response of Salmonella typhimurium induced by chemical mutagens. . J Biosci Bioeng 105:, 690–693. [CrossRef] [PubMed]
    [Google Scholar]
  92. Scoffone V. , Dondi D. , Biino G. , Borghese G. , Pasini D. , Galizzi A. , Calvio C. . ( 2013; ). Knockout of pgdS and ggt genes improves γ-PGA yield in B. subtilis . . Biotechnol Bioeng 110:, 2006–2012. [CrossRef] [PubMed]
    [Google Scholar]
  93. Shih I. L. , Van Y. T. . ( 2001; ). The production of poly-(γ-glutamic acid) from microorganisms and its various applications. . Bioresour Technol 79:, 207–225. [CrossRef] [PubMed]
    [Google Scholar]
  94. Shih L. , Wu J. . ( 2009; ). Biosynthesis and application of poly(γ-glutamic acid). . In Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives, pp. 101–135. Edited by Rehm B. H. A. . . Caister:: Horizon Scientific Press;.
    [Google Scholar]
  95. Shih I. L. , Van Y. T. , Yeh L. C. , Lin H. G. , Chang Y. N. . ( 2001; ). Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. . Bioresour Technol 78:, 267–272. [CrossRef] [PubMed]
    [Google Scholar]
  96. Shih I. L. , Van Y. T. , Sau Y. Y. . ( 2003; ). Antifreeze activities of poly(γ-glutamic acid) produced by Bacillus licheniformis . . Biotechnol Lett 25:, 1709–1712. [CrossRef] [PubMed]
    [Google Scholar]
  97. Shih I. L. , Wu P. J. , Shieh C. J. . ( 2005; ). Microbial production of a poly(γ-glutamic acid) derivative by Bacillus subtilis . . Process Biochem 40:, 2827–2832. [CrossRef]
    [Google Scholar]
  98. Shyu Y. , Sung W. . ( 2010; ). Improving the emulsion stability of sponge cake by the addition of γ-polyglutamic acid. . J Mar Sci Technol 18:, 895–900.
    [Google Scholar]
  99. Shyu Y.-S. , Hwang J.-Y. , Hsu C.-K. . ( 2008; ). Improving the rheological and thermal properties of wheat dough by the addition of γ-polyglutamic acid. . LWT – Food Sci Technol 41:, 982–987. [CrossRef]
    [Google Scholar]
  100. Siaterlis A. , Deepika G. , Charalampopoulos D. . ( 2009; ). Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. . Lett Appl Microbiol 48:, 295–301. [CrossRef] [PubMed]
    [Google Scholar]
  101. Singer J. W. . ( 2005; ). Paclitaxel poliglumex (XYOTAX, CT-2103): a macromolecular taxane. . J Control Release 109:, 120–126. [CrossRef] [PubMed]
    [Google Scholar]
  102. Soliman N. A. , Berekaa M. M. , Abdel-Fattah Y. R. . ( 2005; ). Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett–Burman experimental design to evaluate culture requirements. . Appl Microbiol Biotechnol 69:, 259–267. [CrossRef] [PubMed]
    [Google Scholar]
  103. Stanley N. R. , Lazazzera B. A. . ( 2005; ). Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-dl-glutamic acid production and biofilm formation. . Mol Microbiol 57:, 1143–1158. [CrossRef] [PubMed]
    [Google Scholar]
  104. Sung M. H. , Park C. , Choi J. C. , Uyama H. , Park S. L. . ( 2005a; ). Hyaluronidase inhibitor containing poly-gamma-glutamic acid as an effective component. US Patent 12/090,678. .
  105. Sung M. H. , Park C. , Kim C.-J. , Poo H. , Soda K. , Ashiuchi M. . ( 2005b; ). Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. . Chem Rec 5:, 352–366. [CrossRef] [PubMed]
    [Google Scholar]
  106. Suzuki T. , Tahara Y. . ( 2003; ). Characterization of the Bacillus subtilis ywtD gene, whose product is involved in γ-polyglutamic acid degradation. . J Bacteriol 185:, 2379–2382. [CrossRef] [PubMed]
    [Google Scholar]
  107. Tanimoto H. , Mori M. , Motoki M. , Torii K. , Kadowaki M. , Noguchi T. . ( 2001; ). Natto mucilage containing poly-γ-glutamic acid increases soluble calcium in the rat small intestine. . Biosci Biotechnol Biochem 65:, 516–521. [CrossRef] [PubMed]
    [Google Scholar]
  108. Tanimoto H. , Fox T. , Eagles J. , Satoh H. , Nozawa H. , Okiyama A. , Morinaga Y. , Fairweather-Tait S. J. . ( 2007; ). Acute effect of poly-γ-glutamic acid on calcium absorption in post-menopausal women. . J Am Coll Nutr 26:, 645–649. [CrossRef] [PubMed]
    [Google Scholar]
  109. Tarui Y. , Iida H. , Ono E. , Miki W. , Hirasawa E. , Fujita K. , Tanaka T. , Taniguchi M. . ( 2005; ). Biosynthesis of poly-γ-glutamic acid in plants: transient expression of poly-γ-glutamate synthetase complex in tobacco leaves. . J Biosci Bioeng 100:, 443–448. [CrossRef] [PubMed]
    [Google Scholar]
  110. Thorne C. B. , Leonard C. G. . ( 1958; ). Isolation of d- and l-glutamyl polypeptides from culture filtrates of Bacillus subtilis. . J Biol Chem 233:, 1109–1112.[PubMed]
    [Google Scholar]
  111. Thorne C. B. , Gomez C. G. , Housewright R. D. . ( 1955; ). Transamination of d-amino acids by Bacillus subtilis . . J Bacteriol 69:, 357–362.[PubMed]
    [Google Scholar]
  112. Tiffany M. L. , Krimm S. . ( 1969; ). Circular dichroism of the “random” polypeptide chain. . Biopolymers 8:, 347–359. [CrossRef]
    [Google Scholar]
  113. Tomcsik J. , Szongott H. . ( 1933; ). Über ein spezifisches Protein der Kapsel des Milzbrandbazillus. . Zeitschr Immunität-Forsch 78:, 86–99.
    [Google Scholar]
  114. Tran L. S. , Nagai T. , Itoh Y. . ( 2000; ). Divergent structure of the ComQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis . . Mol Microbiol 37:, 1159–1171. [CrossRef] [PubMed]
    [Google Scholar]
  115. Tsao C. T. , Chang C. H. , Lin Y. Y. , Wu M. F. , Wang J. L. , Young T. H. , Han J. L. , Hsieh K. H. . ( 2011; ). Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials. . Carbohydr Polym 84:, 812–819. [CrossRef]
    [Google Scholar]
  116. Tsutomu O. , Makoto T. . ( 2002; ). Biodegradable plastics. Patent WO 02051907. .
  117. Uotani K. , Hidetoshi K. , Endou H. , Tokita F. . ( 2011; ). Sialogogue, oral composition and food product containing the same. US Patent 7910089 B2. .
  118. Urushibata Y. , Tokuyama S. , Tahara Y. . ( 2002a; ). Characterization of the Bacillus subtilis ywsC gene, involved in γ-polyglutamic acid production. . J Bacteriol 184:, 337–343. [CrossRef] [PubMed]
    [Google Scholar]
  119. Urushibata Y. , Tokuyama S. , Tahara Y. . ( 2002b; ). Difference in transcription levels of cap genes for γ-polyglutamic acid production between Bacillus subtilis IFO 16449 and Marburg 168. . J Biosci Bioeng 93:, 252–254. [CrossRef] [PubMed]
    [Google Scholar]
  120. Wang Q. , Chen S. , Zhang J. , Sun M. , Liu Z. , Yu Z. . ( 2008; ). Co-producing lipopeptides and poly-γ-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its biocontrol and fertilizer synergistic effects. . Bioresour Technol 99:, 3318–3323. [CrossRef] [PubMed]
    [Google Scholar]
  121. Weber J. . ( 1990; ). Poly(gamma-glutamic acid)s are the major constituents of nematocysts in Hydra (Hydrozoa, Cnidaria). . J Biol Chem 265:, 9664–9669.[PubMed]
    [Google Scholar]
  122. Wu Q. , Xu H. , Xu L. , Ouyang P. . ( 2006; ). Biosynthesis of poly(γ-glutamic acid) in Bacillus subtilis NX-2: regulation of stereochemical composition of poly(γ-glutamic acid). . Process Biochem 41:, 1650–1655. [CrossRef]
    [Google Scholar]
  123. Wu Q. , Xu H. , Ying H. , Ouyang P. . ( 2010; ). Kinetic analysis and pH-shift control strategy for poly(γ-glutamic acid) production with Bacillus subtilis CGMCC 0833. . Biochem Eng J 50:, 24–28. [CrossRef]
    [Google Scholar]
  124. Xu Z. , Shi F. , Cen P. . ( 2005; ). Production of polyglutamic acid from mixed glucose and sucrose by co-cultivation of Bacillus subtilis and Corynebacterium glutamicum. The 2005 AIChE Annual Meeting, Cincinnati, OH. . https://aiche.confex.com/aiche/2005/techprogram/P25321.HTM
  125. Yamashiro D. , Yoshioka M. , Ashiuchi M. . ( 2011; ). Bacillus subtilis pgsE (formerly ywtC) stimulates poly-γ-glutamate production in the presence of zinc. . Biotechnol Bioeng 108:, 226–230. [CrossRef] [PubMed]
    [Google Scholar]
  126. Yao J. , Jing J. , Xu H. , Liang J. , Wu Q. , Feng X. , Ouyang P. . ( 2009; ). Investigation on enzymatic degradation of γ-polyglutamic acid from Bacillus subtilis NX-2. . J Mol Catal B Enzym 56:, 158–164. [CrossRef]
    [Google Scholar]
  127. Yasuzawa M. , Edagawa K. , Matsunaga T. , Takaoka H. , Yabutani T. . ( 2011; ). Highly selective needle-type glucose sensors prepared by the immobilization of glucose oxidase on gamma-polyglutamic acid film. . Anal Sci 27:, 337–340.[CrossRef]
    [Google Scholar]
  128. Ye H. , Jin L. , Hu R. , Yi Z. , Li J. , Wu Y. , Xi X. , Wu Z. . ( 2006; ). Poly(γ,l-glutamic acid)–cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice. . Biomaterials 27:, 5958–5965. [CrossRef] [PubMed]
    [Google Scholar]
  129. Yokoi H. , Natsuda O. , Hirose J. , Hayashi S. , Takasaki Y. . ( 1995; ). Characteristics of a biopolymer flocculant produced by Bacillus sp. PY-90. . J Ferment Bioeng 79:, 378–380.[CrossRef]
    [Google Scholar]
  130. Zhang H. , Zhu J. , Zhu X. , Cai J. , Zhang A. , Hong Y. , Huang J. , Huang L. , Xu Z. . ( 2012; ). High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10. . Bioresour Technol 116:, 241–246. [CrossRef] [PubMed]
    [Google Scholar]
  131. Zwartouw H. T. , Smith H. . ( 1956; ). Polyglutamic acid from Bacillus anthracis grown in vivo: structure and aggression activity. . Biochem J 63:, 437–442.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081448-0
Loading
/content/journal/micro/10.1099/mic.0.081448-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error