1887

Abstract

Non-typhoidal serotypes of remain important food-borne pathogens worldwide and the frequent emergence of epidemic strains in food-producing animals is a risk to public health. In recent years, 4,[5],12:i:- isolates, expressing only phase 1 (FliC) of the two flagellar antigens, have emerged and increased in prevalence worldwide. In Europe, the majority of 4,[5],12:i:- isolates belong to phage types DT193 and DT120 of Typhimurium and pigs have been identified as the reservoir species. In this study we investigated the ability of pig-derived monophasic (4,[5],12:i:-) and biphasic DT193 isolates to invade a porcine intestinal epithelial cell line (IPEC-1) and activate TLR-5, IL-8 and caspases. We found that the 4,[5],12:i:- isolates exhibited comparable adhesion and invasion to that of the virulent . Typhimurium isolate 4/74, suggesting that these strains could be capable of colonizing the small intestine of pigs . Infection with 4,[5],12:i:- and biphasic DT193 isolates resulted in approximately the same level of TLR-5 (a flagellin receptor) and IL-8 (a proinflammatory chemokine) mRNA upregulation. The monophasic variants also elicited similar levels of caspase activation and cytotoxicity to the phase-variable DT193 isolates. These findings suggest that failure of 4,[5],12:i:- DT193 isolates to express a second phase of flagellar antigen (FljB) is unlikely to hamper their pathogenicity during colonization of the porcine intestinal tract.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081349-0
2014-11-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2507.html?itemId=/content/journal/micro/10.1099/mic.0.081349-0&mimeType=html&fmt=ahah

References

  1. Aldridge P. D., Wu C., Gnerer J., Karlinsey J. E., Hughes K. T., Sachs M. S.. ( 2006;). Regulatory protein that inhibits both synthesis and use of the target protein controls flagellar phase variation in Salmonella enterica . Proc Natl Acad Sci U S A103:11340–11345 [CrossRef][PubMed]
    [Google Scholar]
  2. Anderson E. S., Ward L. R., Saxe M. J., de Sa J. D. H.. ( 1977;). Bacteriophage-typing designations of Salmonella typhimurium . J Hyg (Lond)78:297–300 [CrossRef][PubMed]
    [Google Scholar]
  3. Anon.. ( 2013;). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA Journal11:3129
    [Google Scholar]
  4. Anon.. ( 2014;). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA Journal12:3547
    [Google Scholar]
  5. Arques J. L., Hautefort I., Ivory K., Bertelli E., Regoli M., Clare S., Hinton J. C. D., Nicoletti C.. ( 2009;). Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen. Gastroenterology137:579–587, e1–e2 [CrossRef][PubMed]
    [Google Scholar]
  6. Bearson B. L., Bearson S. M. D.. ( 2011;). Host specific differences alter the requirement for certain Salmonella genes during swine colonization. Vet Microbiol150:215–219 [CrossRef][PubMed]
    [Google Scholar]
  7. Bonifield H. R., Hughes K. T.. ( 2003;). Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. J Bacteriol185:3567–3574 [CrossRef][PubMed]
    [Google Scholar]
  8. Carnell S. C., Bowen A., Morgan E., Maskell D. J., Wallis T. S., Stevens M. P.. ( 2007;). Role in virulence and protective efficacy in pigs of Salmonella enterica serovar Typhimurium secreted components identified by signature-tagged mutagenesis. Microbiology153:1940–1952 [CrossRef][PubMed]
    [Google Scholar]
  9. Eaves-Pyles T. D., Wong H. R., Odoms K., Pyles R. B.. ( 2001;). Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. J Immunol167:7009–7016 [CrossRef][PubMed]
    [Google Scholar]
  10. Elewaut D., DiDonato J. A., Kim J. M., Truong F., Eckmann L., Kagnoff M. F.. ( 1999;). NF-κB is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. J Immunol163:1457–1466[PubMed]
    [Google Scholar]
  11. Fink S. L., Cookson B. T.. ( 2007;). Pyroptosis and host cell death responses during Salmonella infection. Cell Microbiol9:2562–2570 [CrossRef][PubMed]
    [Google Scholar]
  12. Gewirtz A. T., Navas T. A., Lyons S., Godowski P. J., Madara J. L.. ( 2001a;). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol167:1882–1885 [CrossRef][PubMed]
    [Google Scholar]
  13. Gewirtz A. T., Simon P. O. Jr, Schmitt C. K., Taylor L. J., Hagedorn C. H., O’Brien A. D., Neish A. S., Madara J. L.. ( 2001b;). Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. J Clin Invest107:99–109 [CrossRef][PubMed]
    [Google Scholar]
  14. Gonzalez-Vallina R., Wang H., Zhan R., Berschneider H. M., Lee R. M., Davidson N. O., Black D. D.. ( 1996;). Lipoprotein and apolipoprotein secretion by a newborn piglet intestinal cell line (IPEC-1). Am J Physiol271:G249–G259[PubMed]
    [Google Scholar]
  15. Hapfelmeier S., Stecher B., Barthel M., Kremer M., Müller A. J., Heikenwalder M., Stallmach T., Hensel M., Pfeffer K.. & other authors ( 2005;). The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J Immunol174:1675–1685 [CrossRef][PubMed]
    [Google Scholar]
  16. Hauser E., Tietze E., Helmuth R., Junker E., Blank K., Prager R., Rabsch W., Appel B., Fruth A., Malorny B.. ( 2010;). Pork contaminated with Salmonella enterica serovar 4,[5],12:i:-, an emerging health risk for humans. Appl Environ Microbiol76:4601–4610 [CrossRef][PubMed]
    [Google Scholar]
  17. Hayashi F., Smith K. D., Ozinsky A., Hawn T. R., Yi E. C., Goodlett D. R., Eng J. K., Akira S., Underhill D. M., Aderem A.. ( 2001;). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature410:1099–1103 [CrossRef][PubMed]
    [Google Scholar]
  18. Hopkins K. L., Kirchner M., Guerra B., Granier S. A., Lucarelli C., Porrero M. C., Jakubczak A., Threlfall E. J., Mevius D. J.. ( 2010;). Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain. Euro Surveill15:19580[PubMed]
    [Google Scholar]
  19. Hopkins K. L., de Pinna E., Wain J.. ( 2012;). Prevalence of Salmonella enterica serovar 4,[5],12:i:- in England and Wales, 2010. Euro Surveill17:20275[PubMed]
    [Google Scholar]
  20. Ikeda J. S., Schmitt C. K., Darnell S. C., Watson P. R., Bispham J., Wallis T. S., Weinstein D. L., Metcalf E. S., Adams P.. & other authors ( 2001;). Flagellar phase variation of Salmonella enterica serovar Typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella-induced enteropathogenesis. Infect Immun69:3021–3030 [CrossRef][PubMed]
    [Google Scholar]
  21. Imre A., Olasz F., Nagy B.. ( 2005;). Development of a PCR system for the characterisation of Salmonella flagellin genes. Acta Vet Hung53:163–172 [CrossRef][PubMed]
    [Google Scholar]
  22. Knodler L. A., Vallance B. A., Celli J., Winfree S., Hansen B., Montero M., Steele-Mortimer O.. ( 2010;). Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc Natl Acad Sci U S A107:17733–17738 [CrossRef][PubMed]
    [Google Scholar]
  23. Martelli F., Gosling R., Kennedy E., Rabie A., Reeves H., Clifton-Hadley F., Davies R., La Ragione R.. ( 2014;). Characterization of the invasiveness of monophasic and aphasic Salmonella Typhimurium strains in 1-day-old and point-of-lay chickens. Avian Pathol43:269–275 [CrossRef][PubMed]
    [Google Scholar]
  24. McCormick B. A., Hofman P. M., Kim J., Carnes D. K., Miller S. I., Madara J. L.. ( 1995;). Surface attachment of Salmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. J Cell Biol131:1599–1608 [CrossRef][PubMed]
    [Google Scholar]
  25. Misselwitz B., Strittmatter G., Periaswamy B., Schlumberger M. C., Rout S., Horvath P., Kozak K., Hardt W. D.. ( 2010;). Enhanced CellClassifier: a multi-class classification tool for microscopy images. BMC Bioinformatics11:30 [CrossRef][PubMed]
    [Google Scholar]
  26. Misselwitz B., Dilling S., Vonaesch P., Sacher R., Snijder B., Schlumberger M., Rout S., Stark M., von Mering C.. & other authors ( 2011;). RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42. Mol Syst Biol7:474 [CrossRef][PubMed]
    [Google Scholar]
  27. Misselwitz B., Barrett N., Kreibich S., Vonaesch P., Andritschke D., Rout S., Weidner K., Sormaz M., Songhet P.. & other authors ( 2012;). Near surface swimming of Salmonella Typhimurium explains target-site selection and cooperative invasion. PLoS Pathog8:e1002810 [CrossRef][PubMed]
    [Google Scholar]
  28. Morgan E., Campbell J. D., Rowe S. C., Bispham J., Stevens M. P., Bowen A. J., Barrow P. A., Maskell D. J., Wallis T. S.. ( 2004;). Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol54:994–1010 [CrossRef][PubMed]
    [Google Scholar]
  29. Paesold G., Guiney D. G., Eckmann L., Kagnoff M. F.. ( 2002;). Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells. Cell Microbiol4:771–781 [CrossRef][PubMed]
    [Google Scholar]
  30. Parsons B. N., Crayford G., Humphrey T. J., Wigley P.. ( 2013;). Infection of chickens with antimicrobial-resistant Salmonella enterica Typhimurium DT193 and monophasic Salmonella Typhimurium-like variants: an emerging risk to the poultry industry. Avian Pathol42:443–446 [CrossRef][PubMed]
    [Google Scholar]
  31. Perrett C. A., Jepson M. A.. ( 2007;). Applications of cell imaging in Salmonella research. Methods Mol Biol394:235–273 [CrossRef][PubMed]
    [Google Scholar]
  32. Rabsch W., Tschäpe H., Bäumler A. J.. ( 2001;). Non-typhoidal salmonellosis: emerging problems. Microbes Infect3:237–247 [CrossRef][PubMed]
    [Google Scholar]
  33. Rajtak U., Boland F., Leonard N., Bolton D., Fanning S.. ( 2012;). Roles of diet and the acid tolerance response in survival of common Salmonella serotypes in feces of finishing pigs. Appl Environ Microbiol78:110–119 [CrossRef][PubMed]
    [Google Scholar]
  34. Reed W. M., Olander H. J., Thacker H. L.. ( 1986;). Studies on the pathogenesis of Salmonella typhimurium and Salmonella choleraesuis var kunzendorf infection in weanling pigs. Am J Vet Res47:75–83[PubMed]
    [Google Scholar]
  35. Reis B. P., Zhang S., Tsolis R. M., Bäumler A. J., Adams L. G., Santos R. L.. ( 2003;). The attenuated sopB mutant of Salmonella enterica serovar Typhimurium has the same tissue distribution and host chemokine response as the wild type in bovine Peyer’s patches. Vet Microbiol97:269–277 [CrossRef][PubMed]
    [Google Scholar]
  36. Schwerk C., Schulze-Osthoff K.. ( 2003;). Non-apoptotic functions of caspases in cellular proliferation and differentiation. Biochem Pharmacol66:1453–1458 [CrossRef][PubMed]
    [Google Scholar]
  37. Simon R., Samuel C. E.. ( 2007;). Activation of NF-κB-dependent gene expression by Salmonella flagellins FliC and FljB. Biochem Biophys Res Commun355:280–285 [CrossRef][PubMed]
    [Google Scholar]
  38. Smith K. D., Andersen-Nissen E., Hayashi F., Strobe K., Bergman M. A., Barrett S. L., Cookson B. T., Aderem A.. ( 2003;). Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol4:1247–1253 [CrossRef][PubMed]
    [Google Scholar]
  39. Tallant T., Deb A., Kar N., Lupica J., De Veer M. J., DiDonato J. A.. ( 2004;). Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-κB and proinflammatory gene program activation in intestinal epithelial cells. BMC Microbiol4:33 [CrossRef][PubMed]
    [Google Scholar]
  40. Tsolis R. M., Adams L. G., Ficht T. A., Bäumler A. J.. ( 1999;). Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun67:4879–4885[PubMed]
    [Google Scholar]
  41. van Asten A. J. A. M., Zwaagstra K. A., Baay M. F., Kusters J. G., Huis in’t Veld J. H., van der Zeijst B. A.. ( 1995;). Identification of the domain which determines the g,m serotype of the flagellin of Salmonella enteritidis . J Bacteriol177:1610–1613[PubMed]
    [Google Scholar]
  42. Van Parys A., Boyen F., Leyman B., Verbrugghe E., Haesebrouck F., Pasmans F.. ( 2011;). Tissue-specific Salmonella Typhimurium gene expression during persistence in pigs. PLoS ONE6:e24120 [CrossRef][PubMed]
    [Google Scholar]
  43. Vijay-Kumar M., Wu H., Jones R., Grant G., Babbin B., King T. P., Kelly D., Gewirtz A. T., Neish A. S.. ( 2006;). Flagellin suppresses epithelial apoptosis and limits disease during enteric infection. Am J Pathol169:1686–1700 [CrossRef][PubMed]
    [Google Scholar]
  44. Watson P. R., Paulin S. M., Bland A. P., Jones P. W., Wallis T. S.. ( 1995;). Characterization of intestinal invasion by Salmonella typhimurium and Salmonella dublin and effect of a mutation in the invH gene. Infect Immun63:2743–2754[PubMed]
    [Google Scholar]
  45. Wells T. J., Sherlock O., Rivas L., Mahajan A., Beatson S. A., Torpdahl M., Webb R. I., Allsopp L. P., Gobius K. S.. & other authors ( 2008;). EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157 : H7 that contributes to adhesion and biofilm formation. Environ Microbiol10:589–604 [CrossRef][PubMed]
    [Google Scholar]
  46. Yoon S. I., Kurnasov O., Natarajan V., Hong M., Gudkov A. V., Osterman A. L., Wilson I. A.. ( 2012;). Structural basis of TLR5-flagellin recognition and signaling. Science335:859–864 [CrossRef][PubMed]
    [Google Scholar]
  47. Yu Y., Zeng H., Lyons S., Carlson A., Merlin D., Neish A. S., Gewirtz A. T.. ( 2003;). TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttranscriptional mechanism. Am J Physiol Gastrointest Liver Physiol285:G282–G290[PubMed][CrossRef]
    [Google Scholar]
  48. Zeng H., Carlson A. Q., Guo Y., Yu Y., Collier-Hyams L. S., Madara J. L., Gewirtz A. T., Neish A. S.. ( 2003;). Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella . J Immunol171:3668–3674 [CrossRef][PubMed]
    [Google Scholar]
  49. Zeng H., Wu H., Sloane V., Jones R., Yu Y., Lin P., Gewirtz A. T., Neish A. S.. ( 2006;). Flagellin/TLR5 responses in epithelia reveal intertwined activation of inflammatory and apoptotic pathways. Am J Physiol Gastrointest Liver Physiol290:G96–G108[PubMed][CrossRef]
    [Google Scholar]
  50. Zhang S., Kingsley R. A., Santos R. L., Andrews-Polymenis H., Raffatellu M., Figueiredo J., Nunes J., Tsolis R. M., Adams L. G., Bäumler A. J.. ( 2003;). Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. Infect Immun71:1–12 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081349-0
Loading
/content/journal/micro/10.1099/mic.0.081349-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error