1887

Abstract

Non-typhoidal serotypes of remain important food-borne pathogens worldwide and the frequent emergence of epidemic strains in food-producing animals is a risk to public health. In recent years, 4,[5],12:i:- isolates, expressing only phase 1 (FliC) of the two flagellar antigens, have emerged and increased in prevalence worldwide. In Europe, the majority of 4,[5],12:i:- isolates belong to phage types DT193 and DT120 of Typhimurium and pigs have been identified as the reservoir species. In this study we investigated the ability of pig-derived monophasic (4,[5],12:i:-) and biphasic DT193 isolates to invade a porcine intestinal epithelial cell line (IPEC-1) and activate TLR-5, IL-8 and caspases. We found that the 4,[5],12:i:- isolates exhibited comparable adhesion and invasion to that of the virulent . Typhimurium isolate 4/74, suggesting that these strains could be capable of colonizing the small intestine of pigs . Infection with 4,[5],12:i:- and biphasic DT193 isolates resulted in approximately the same level of TLR-5 (a flagellin receptor) and IL-8 (a proinflammatory chemokine) mRNA upregulation. The monophasic variants also elicited similar levels of caspase activation and cytotoxicity to the phase-variable DT193 isolates. These findings suggest that failure of 4,[5],12:i:- DT193 isolates to express a second phase of flagellar antigen (FljB) is unlikely to hamper their pathogenicity during colonization of the porcine intestinal tract.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081349-0
2014-11-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2507.html?itemId=/content/journal/micro/10.1099/mic.0.081349-0&mimeType=html&fmt=ahah

References

  1. Aldridge P. D. , Wu C. , Gnerer J. , Karlinsey J. E. , Hughes K. T. , Sachs M. S. . ( 2006; ). Regulatory protein that inhibits both synthesis and use of the target protein controls flagellar phase variation in Salmonella enterica . . Proc Natl Acad Sci U S A 103:, 11340–11345. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anderson E. S. , Ward L. R. , Saxe M. J. , de Sa J. D. H. . ( 1977; ). Bacteriophage-typing designations of Salmonella typhimurium . . J Hyg (Lond) 78:, 297–300. [CrossRef] [PubMed]
    [Google Scholar]
  3. Anon. . ( 2013; ). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. . EFSA Journal 11:, 3129.
    [Google Scholar]
  4. Anon. . ( 2014; ). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. . EFSA Journal 12:, 3547.
    [Google Scholar]
  5. Arques J. L. , Hautefort I. , Ivory K. , Bertelli E. , Regoli M. , Clare S. , Hinton J. C. D. , Nicoletti C. . ( 2009; ). Salmonella induces flagellin- and MyD88-dependent migration of bacteria-capturing dendritic cells into the gut lumen. . Gastroenterology 137:, 579–587, e1–e2. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bearson B. L. , Bearson S. M. D. . ( 2011; ). Host specific differences alter the requirement for certain Salmonella genes during swine colonization. . Vet Microbiol 150:, 215–219. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bonifield H. R. , Hughes K. T. . ( 2003; ). Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. . J Bacteriol 185:, 3567–3574. [CrossRef] [PubMed]
    [Google Scholar]
  8. Carnell S. C. , Bowen A. , Morgan E. , Maskell D. J. , Wallis T. S. , Stevens M. P. . ( 2007; ). Role in virulence and protective efficacy in pigs of Salmonella enterica serovar Typhimurium secreted components identified by signature-tagged mutagenesis. . Microbiology 153:, 1940–1952. [CrossRef] [PubMed]
    [Google Scholar]
  9. Eaves-Pyles T. D. , Wong H. R. , Odoms K. , Pyles R. B. . ( 2001; ). Salmonella flagellin-dependent proinflammatory responses are localized to the conserved amino and carboxyl regions of the protein. . J Immunol 167:, 7009–7016. [CrossRef] [PubMed]
    [Google Scholar]
  10. Elewaut D. , DiDonato J. A. , Kim J. M. , Truong F. , Eckmann L. , Kagnoff M. F. . ( 1999; ). NF-κB is a central regulator of the intestinal epithelial cell innate immune response induced by infection with enteroinvasive bacteria. . J Immunol 163:, 1457–1466.[PubMed]
    [Google Scholar]
  11. Fink S. L. , Cookson B. T. . ( 2007; ). Pyroptosis and host cell death responses during Salmonella infection. . Cell Microbiol 9:, 2562–2570. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gewirtz A. T. , Navas T. A. , Lyons S. , Godowski P. J. , Madara J. L. . ( 2001a; ). Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. . J Immunol 167:, 1882–1885. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gewirtz A. T. , Simon P. O. Jr , Schmitt C. K. , Taylor L. J. , Hagedorn C. H. , O’Brien A. D. , Neish A. S. , Madara J. L. . ( 2001b; ). Salmonella typhimurium translocates flagellin across intestinal epithelia, inducing a proinflammatory response. . J Clin Invest 107:, 99–109. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gonzalez-Vallina R. , Wang H. , Zhan R. , Berschneider H. M. , Lee R. M. , Davidson N. O. , Black D. D. . ( 1996; ). Lipoprotein and apolipoprotein secretion by a newborn piglet intestinal cell line (IPEC-1). . Am J Physiol 271:, G249–G259.[PubMed]
    [Google Scholar]
  15. Hapfelmeier S. , Stecher B. , Barthel M. , Kremer M. , Müller A. J. , Heikenwalder M. , Stallmach T. , Hensel M. , Pfeffer K. . & other authors ( 2005; ). The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. . J Immunol 174:, 1675–1685. [CrossRef] [PubMed]
    [Google Scholar]
  16. Hauser E. , Tietze E. , Helmuth R. , Junker E. , Blank K. , Prager R. , Rabsch W. , Appel B. , Fruth A. , Malorny B. . ( 2010; ). Pork contaminated with Salmonella enterica serovar 4,[5],12:i:-, an emerging health risk for humans. . Appl Environ Microbiol 76:, 4601–4610. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hayashi F. , Smith K. D. , Ozinsky A. , Hawn T. R. , Yi E. C. , Goodlett D. R. , Eng J. K. , Akira S. , Underhill D. M. , Aderem A. . ( 2001; ). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. . Nature 410:, 1099–1103. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hopkins K. L. , Kirchner M. , Guerra B. , Granier S. A. , Lucarelli C. , Porrero M. C. , Jakubczak A. , Threlfall E. J. , Mevius D. J. . ( 2010; ). Multiresistant Salmonella enterica serovar 4,[5],12:i:- in Europe: a new pandemic strain. ? Euro Surveill 15:, 19580.[PubMed]
    [Google Scholar]
  19. Hopkins K. L. , de Pinna E. , Wain J. . ( 2012; ). Prevalence of Salmonella enterica serovar 4,[5],12:i:- in England and Wales, 2010. . Euro Surveill 17:, 20275.[PubMed]
    [Google Scholar]
  20. Ikeda J. S. , Schmitt C. K. , Darnell S. C. , Watson P. R. , Bispham J. , Wallis T. S. , Weinstein D. L. , Metcalf E. S. , Adams P. . & other authors ( 2001; ). Flagellar phase variation of Salmonella enterica serovar Typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella-induced enteropathogenesis. . Infect Immun 69:, 3021–3030. [CrossRef] [PubMed]
    [Google Scholar]
  21. Imre A. , Olasz F. , Nagy B. . ( 2005; ). Development of a PCR system for the characterisation of Salmonella flagellin genes. . Acta Vet Hung 53:, 163–172. [CrossRef] [PubMed]
    [Google Scholar]
  22. Knodler L. A. , Vallance B. A. , Celli J. , Winfree S. , Hansen B. , Montero M. , Steele-Mortimer O. . ( 2010; ). Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. . Proc Natl Acad Sci U S A 107:, 17733–17738. [CrossRef] [PubMed]
    [Google Scholar]
  23. Martelli F. , Gosling R. , Kennedy E. , Rabie A. , Reeves H. , Clifton-Hadley F. , Davies R. , La Ragione R. . ( 2014; ). Characterization of the invasiveness of monophasic and aphasic Salmonella Typhimurium strains in 1-day-old and point-of-lay chickens. . Avian Pathol 43:, 269–275. [CrossRef] [PubMed]
    [Google Scholar]
  24. McCormick B. A. , Hofman P. M. , Kim J. , Carnes D. K. , Miller S. I. , Madara J. L. . ( 1995; ). Surface attachment of Salmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. . J Cell Biol 131:, 1599–1608. [CrossRef] [PubMed]
    [Google Scholar]
  25. Misselwitz B. , Strittmatter G. , Periaswamy B. , Schlumberger M. C. , Rout S. , Horvath P. , Kozak K. , Hardt W. D. . ( 2010; ). Enhanced CellClassifier: a multi-class classification tool for microscopy images. . BMC Bioinformatics 11:, 30. [CrossRef] [PubMed]
    [Google Scholar]
  26. Misselwitz B. , Dilling S. , Vonaesch P. , Sacher R. , Snijder B. , Schlumberger M. , Rout S. , Stark M. , von Mering C. . & other authors ( 2011; ). RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42. . Mol Syst Biol 7:, 474. [CrossRef] [PubMed]
    [Google Scholar]
  27. Misselwitz B. , Barrett N. , Kreibich S. , Vonaesch P. , Andritschke D. , Rout S. , Weidner K. , Sormaz M. , Songhet P. . & other authors ( 2012; ). Near surface swimming of Salmonella Typhimurium explains target-site selection and cooperative invasion. . PLoS Pathog 8:, e1002810. [CrossRef] [PubMed]
    [Google Scholar]
  28. Morgan E. , Campbell J. D. , Rowe S. C. , Bispham J. , Stevens M. P. , Bowen A. J. , Barrow P. A. , Maskell D. J. , Wallis T. S. . ( 2004; ). Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. . Mol Microbiol 54:, 994–1010. [CrossRef] [PubMed]
    [Google Scholar]
  29. Paesold G. , Guiney D. G. , Eckmann L. , Kagnoff M. F. . ( 2002; ). Genes in the Salmonella pathogenicity island 2 and the Salmonella virulence plasmid are essential for Salmonella-induced apoptosis in intestinal epithelial cells. . Cell Microbiol 4:, 771–781. [CrossRef] [PubMed]
    [Google Scholar]
  30. Parsons B. N. , Crayford G. , Humphrey T. J. , Wigley P. . ( 2013; ). Infection of chickens with antimicrobial-resistant Salmonella enterica Typhimurium DT193 and monophasic Salmonella Typhimurium-like variants: an emerging risk to the poultry industry. ? Avian Pathol 42:, 443–446. [CrossRef] [PubMed]
    [Google Scholar]
  31. Perrett C. A. , Jepson M. A. . ( 2007; ). Applications of cell imaging in Salmonella research. . Methods Mol Biol 394:, 235–273. [CrossRef] [PubMed]
    [Google Scholar]
  32. Rabsch W. , Tschäpe H. , Bäumler A. J. . ( 2001; ). Non-typhoidal salmonellosis: emerging problems. . Microbes Infect 3:, 237–247. [CrossRef] [PubMed]
    [Google Scholar]
  33. Rajtak U. , Boland F. , Leonard N. , Bolton D. , Fanning S. . ( 2012; ). Roles of diet and the acid tolerance response in survival of common Salmonella serotypes in feces of finishing pigs. . Appl Environ Microbiol 78:, 110–119. [CrossRef] [PubMed]
    [Google Scholar]
  34. Reed W. M. , Olander H. J. , Thacker H. L. . ( 1986; ). Studies on the pathogenesis of Salmonella typhimurium and Salmonella choleraesuis var kunzendorf infection in weanling pigs. . Am J Vet Res 47:, 75–83.[PubMed]
    [Google Scholar]
  35. Reis B. P. , Zhang S. , Tsolis R. M. , Bäumler A. J. , Adams L. G. , Santos R. L. . ( 2003; ). The attenuated sopB mutant of Salmonella enterica serovar Typhimurium has the same tissue distribution and host chemokine response as the wild type in bovine Peyer’s patches. . Vet Microbiol 97:, 269–277. [CrossRef] [PubMed]
    [Google Scholar]
  36. Schwerk C. , Schulze-Osthoff K. . ( 2003; ). Non-apoptotic functions of caspases in cellular proliferation and differentiation. . Biochem Pharmacol 66:, 1453–1458. [CrossRef] [PubMed]
    [Google Scholar]
  37. Simon R. , Samuel C. E. . ( 2007; ). Activation of NF-κB-dependent gene expression by Salmonella flagellins FliC and FljB. . Biochem Biophys Res Commun 355:, 280–285. [CrossRef] [PubMed]
    [Google Scholar]
  38. Smith K. D. , Andersen-Nissen E. , Hayashi F. , Strobe K. , Bergman M. A. , Barrett S. L. , Cookson B. T. , Aderem A. . ( 2003; ). Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. . Nat Immunol 4:, 1247–1253. [CrossRef] [PubMed]
    [Google Scholar]
  39. Tallant T. , Deb A. , Kar N. , Lupica J. , De Veer M. J. , DiDonato J. A. . ( 2004; ). Flagellin acting via TLR5 is the major activator of key signaling pathways leading to NF-κB and proinflammatory gene program activation in intestinal epithelial cells. . BMC Microbiol 4:, 33. [CrossRef] [PubMed]
    [Google Scholar]
  40. Tsolis R. M. , Adams L. G. , Ficht T. A. , Bäumler A. J. . ( 1999; ). Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. . Infect Immun 67:, 4879–4885.[PubMed]
    [Google Scholar]
  41. van Asten A. J. A. M. , Zwaagstra K. A. , Baay M. F. , Kusters J. G. , Huis in’t Veld J. H. , van der Zeijst B. A. . ( 1995; ). Identification of the domain which determines the g,m serotype of the flagellin of Salmonella enteritidis . . J Bacteriol 177:, 1610–1613.[PubMed]
    [Google Scholar]
  42. Van Parys A. , Boyen F. , Leyman B. , Verbrugghe E. , Haesebrouck F. , Pasmans F. . ( 2011; ). Tissue-specific Salmonella Typhimurium gene expression during persistence in pigs. . PLoS ONE 6:, e24120. [CrossRef] [PubMed]
    [Google Scholar]
  43. Vijay-Kumar M. , Wu H. , Jones R. , Grant G. , Babbin B. , King T. P. , Kelly D. , Gewirtz A. T. , Neish A. S. . ( 2006; ). Flagellin suppresses epithelial apoptosis and limits disease during enteric infection. . Am J Pathol 169:, 1686–1700. [CrossRef] [PubMed]
    [Google Scholar]
  44. Watson P. R. , Paulin S. M. , Bland A. P. , Jones P. W. , Wallis T. S. . ( 1995; ). Characterization of intestinal invasion by Salmonella typhimurium and Salmonella dublin and effect of a mutation in the invH gene. . Infect Immun 63:, 2743–2754.[PubMed]
    [Google Scholar]
  45. Wells T. J. , Sherlock O. , Rivas L. , Mahajan A. , Beatson S. A. , Torpdahl M. , Webb R. I. , Allsopp L. P. , Gobius K. S. . & other authors ( 2008; ). EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157 : H7 that contributes to adhesion and biofilm formation. . Environ Microbiol 10:, 589–604. [CrossRef] [PubMed]
    [Google Scholar]
  46. Yoon S. I. , Kurnasov O. , Natarajan V. , Hong M. , Gudkov A. V. , Osterman A. L. , Wilson I. A. . ( 2012; ). Structural basis of TLR5-flagellin recognition and signaling. . Science 335:, 859–864. [CrossRef] [PubMed]
    [Google Scholar]
  47. Yu Y. , Zeng H. , Lyons S. , Carlson A. , Merlin D. , Neish A. S. , Gewirtz A. T. . ( 2003; ). TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttranscriptional mechanism. . Am J Physiol Gastrointest Liver Physiol 285:, G282–G290.[PubMed] [CrossRef]
    [Google Scholar]
  48. Zeng H. , Carlson A. Q. , Guo Y. , Yu Y. , Collier-Hyams L. S. , Madara J. L. , Gewirtz A. T. , Neish A. S. . ( 2003; ). Flagellin is the major proinflammatory determinant of enteropathogenic Salmonella . . J Immunol 171:, 3668–3674. [CrossRef] [PubMed]
    [Google Scholar]
  49. Zeng H. , Wu H. , Sloane V. , Jones R. , Yu Y. , Lin P. , Gewirtz A. T. , Neish A. S. . ( 2006; ). Flagellin/TLR5 responses in epithelia reveal intertwined activation of inflammatory and apoptotic pathways. . Am J Physiol Gastrointest Liver Physiol 290:, G96–G108.[PubMed] [CrossRef]
    [Google Scholar]
  50. Zhang S. , Kingsley R. A. , Santos R. L. , Andrews-Polymenis H. , Raffatellu M. , Figueiredo J. , Nunes J. , Tsolis R. M. , Adams L. G. , Bäumler A. J. . ( 2003; ). Molecular pathogenesis of Salmonella enterica serotype Typhimurium-induced diarrhea. . Infect Immun 71:, 1–12. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081349-0
Loading
/content/journal/micro/10.1099/mic.0.081349-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error