1887

Abstract

ParA belongs to a large subfamily of Walker-type ATPases acting as partitioning proteins in bacteria. ParA has the ability to both self-associate and interact with its partner ParB. Analysis of the deletion mutants defined the part of the protein involved in dimerization and interactions with ParB. Here, a set of ParA alanine substitution mutants in the region between E67 and L85 was created and analysed and . All mutants impaired in dimerization (substitutions at positions M74, H79, Y82 and L84) were also defective in interactions with ParB, suggesting that ParA–ParB interactions depend on the ability of ParA to dimerize. Mutants with alanine substitutions at positions E67, C68, L70, E72, F76, Q83 and L85 were not impaired in dimerization, but were defective in interactions with ParB. The dimerization interface partly overlapped the pseudo-hairpin, involved in interactions with ParB. ParA mutant derivatives tested showed no defects in ATPase activity. Two alleles (, whose product can neither self-interact nor interact with ParB, and , whose product is impaired in interactions with ParB, but not in dimerization) were introduced into the chromosome by homologous gene exchange. Both mutants showed defective separation of ParB foci, but to different extents. Only PAO1161 was visibly impaired in terms of chromosome segregation, growth rate and motility, similar to a -null mutant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081216-0
2014-11-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2406.html?itemId=/content/journal/micro/10.1099/mic.0.081216-0&mimeType=html&fmt=ahah

References

  1. Ah-Seng Y., Lopez F., Pasta F., Lane D., Bouet J. Y.. ( 2009;). Dual role of DNA in regulating ATP hydrolysis by the SopA partition protein. . J Biol Chem 284:, 30067–30075. [CrossRef][PubMed]
    [Google Scholar]
  2. Ah-Seng Y., Rech J., Lane D., Bouet J. Y.. ( 2013;). Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids. . PLoS Genet 9:, e1003956. [CrossRef][PubMed]
    [Google Scholar]
  3. Banigan E. J., Gelbart M. A., Gitai Z., Wingreen N. S., Liu A. J.. ( 2011;). Filament depolymerization can explain chromosome pulling during bacterial mitosis. . PLOS Comput Biol 7:, e1002145. [CrossRef][PubMed]
    [Google Scholar]
  4. Barillà D., Hayes F.. ( 2003;). Architecture of the ParF·ParG protein complex involved in prokaryotic DNA segregation. . Mol Microbiol 49:, 487–499. [CrossRef][PubMed]
    [Google Scholar]
  5. Barillà D., Carmelo E., Hayes F.. ( 2007;). The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif. . Proc Natl Acad Sci U S A 104:, 1811–1816. [CrossRef][PubMed]
    [Google Scholar]
  6. Bartosik A. A., Lasocki K., Mierzejewska J., Thomas C. M., Jagura-Burdzy G.. ( 2004;). ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth. . J Bacteriol 186:, 6983–6998. [CrossRef][PubMed]
    [Google Scholar]
  7. Bartosik A. A., Mierzejewska J., Thomas C. M., Jagura-Burdzy G.. ( 2009;). ParB deficiency in Pseudomonas aeruginosa destabilizes the partner protein ParA and affects a variety of physiological parameters. . Microbiology 155:, 1080–1092. [CrossRef][PubMed]
    [Google Scholar]
  8. Bartosik A. A., Glabski K., Jecz P., Mikulska S., Fogtman A., Koblowska M., Jagura-Burdzy G.. ( 2014;). Transcriptional profiling of ParA and ParB mutants in actively dividing cells of an opportunistic human pathogen Pseudomonas aeruginosa. . PLoS ONE 9:, e87276. [CrossRef][PubMed]
    [Google Scholar]
  9. Batt S. M., Bingle L. E. H., Dafforn T. R., Thomas C. M.. ( 2009;). Bacterial genome partitioning: N-terminal domain of IncC protein encoded by broad-host-range plasmid RK2 modulates oligomerisation and DNA binding. . J Mol Biol 385:, 1361–1374. [CrossRef][PubMed]
    [Google Scholar]
  10. Bignell C. R., Haines A. S., Khare D., Thomas C. M.. ( 1999;). Effect of growth rate and incC mutation on symmetric plasmid distribution by the IncP-1 partitioning apparatus. . Mol Microbiol 34:, 205–216. [CrossRef][PubMed]
    [Google Scholar]
  11. Bouet J.-Y., Funnell B. E.. ( 1999;). P1 ParA interacts with the P1 partition complex at parS and an ATP–ADP switch controls ParA activities. . EMBO J 18:, 1415–1424. [CrossRef][PubMed]
    [Google Scholar]
  12. Bouet J.-Y., Ah-Seng Y., Benmeradi N., Lane D.. ( 2007;). Polymerization of SopA partition ATPase: regulation by DNA binding and SopB. . Mol Microbiol 63:, 468–481. [CrossRef][PubMed]
    [Google Scholar]
  13. Bowman G. R., Comolli L. R., Zhu J., Eckart M., Koenig M., Downing K. H., Moerner W. E., Earnest T., Shapiro L.. ( 2008;). A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. . Cell 134:, 945–955. [CrossRef][PubMed]
    [Google Scholar]
  14. Dmowski M., Jagura-Burdzy G.. ( 2011;). Mapping of the interactions between partition proteins Delta and Omega of plasmid pSM19035 from Streptococcus pyogenes. . Microbiology 157:, 1009–1020. [CrossRef][PubMed]
    [Google Scholar]
  15. Dunham T. D., Xu W., Funnell B. E., Schumacher M. A.. ( 2009;). Structural basis for ADP-mediated transcriptional regulation by P1 and P7 ParA. . EMBO J 28:, 1792–1802. [CrossRef][PubMed]
    [Google Scholar]
  16. El-Sayed A. K., Hothersall J., Thomas C. M.. ( 2001;). Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. . Microbiology 147:, 2127–2139.[PubMed]
    [Google Scholar]
  17. Figge R. M., Easter J., Gober J. W.. ( 2003;). Productive interaction between the chromosome partitioning proteins, ParA and ParB, is required for the progression of the cell cycle in Caulobacter crescentus. . Mol Microbiol 47:, 1225–1237. [CrossRef][PubMed]
    [Google Scholar]
  18. Fogel M. A., Waldor M. K.. ( 2006;). A dynamic, mitotic-like mechanism for bacterial chromosome segregation. . Genes Dev 20:, 3269–3282. [CrossRef][PubMed]
    [Google Scholar]
  19. Gerdes K., Møller-Jensen J., Jensen R. B.. ( 2000;). Plasmid and chromosome partitioning: surprises from phylogeny. . Mol Microbiol 37:, 455–466. [CrossRef][PubMed]
    [Google Scholar]
  20. Gerdes K., Howard M., Szardenings F.. ( 2010;). Pushing and pulling in prokaryotic DNA segregation. . Cell 141:, 927–942. [CrossRef][PubMed]
    [Google Scholar]
  21. Gruber S., Errington J.. ( 2009;). Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. . Cell 137:, 685–696. [CrossRef][PubMed]
    [Google Scholar]
  22. Hwang L. C., Vecchiarelli A. G., Han Y. W., Mizuuchi M., Harada Y., Funnell B. E., Mizuuchi K.. ( 2013;). ParA-mediated plasmid partition driven by protein pattern self-organization. . EMBO J 32:, 1238–1249. [CrossRef][PubMed]
    [Google Scholar]
  23. Jakimowicz D., Zydek P., Kois A., Zakrzewska-Czerwińska J., Chater K. F.. ( 2007;). Alignment of multiple chromosomes along helical ParA scaffolding in sporulating Streptomyces hyphae. . Mol Microbiol 65:, 625–641. [CrossRef][PubMed]
    [Google Scholar]
  24. Kadoya R., Baek J. H., Sarker A., Chattoraj D. K.. ( 2011;). Participation of chromosome segregation protein ParAI of Vibrio cholerae in chromosome replication. . J Bacteriol 193:, 1504–1514. [CrossRef][PubMed]
    [Google Scholar]
  25. Kahn M., Kolter R., Thomas C. M., Figurski D., Meyer R., Remaut E., Helinski D. R.. ( 1979;). Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2. . Methods Enzymol 68:, 268–280. [CrossRef][PubMed]
    [Google Scholar]
  26. Karimova G., Pidoux J., Ullmann A., Ladant D.. ( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. . Proc Natl Acad Sci U S A 95:, 5752–5756. [CrossRef][PubMed]
    [Google Scholar]
  27. Karimova G., Ullmann A., Ladant D.. ( 2000;). A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli. . Methods Enzymol 328:, 59–73. [CrossRef][PubMed]
    [Google Scholar]
  28. Kim S.-K., Shim J.. ( 1999;). Interaction between F plasmid partition proteins SopA and SopB. . Biochem Biophys Res Commun 263:, 113–117. [CrossRef][PubMed]
    [Google Scholar]
  29. Koonin E. V.. ( 1993;). A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. . Nucleic Acids Res 21:, 2541–2547. [CrossRef][PubMed]
    [Google Scholar]
  30. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. II, Peterson K. M.. ( 1994;). pBBR1MCS: a broad-host-range cloning vector. . Biotechniques 16:, 800–802.[PubMed]
    [Google Scholar]
  31. Kusiak M., Gapczynska A., Plochocka D., Thomas C. M., Jagura-Burdzy G.. ( 2011;). Binding and spreading of ParB on DNA determine its biological function in Pseudomonas aeruginosa. . J Bacteriol 193:, 3342–3355. [CrossRef][PubMed]
    [Google Scholar]
  32. Lasocki K., Bartosik A. A., Mierzejewska J., Thomas C. M., Jagura-Burdzy G.. ( 2007;). Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. . J Bacteriol 189:, 5762–5772. [CrossRef][PubMed]
    [Google Scholar]
  33. Leipe D. D., Wolf Y. I., Koonin E. V., Aravind L.. ( 2002;). Classification and evolution of P-loop GTPases and related ATPases. . J Mol Biol 317:, 41–72. [CrossRef][PubMed]
    [Google Scholar]
  34. Leonard T. A., Butler P. J., Löwe J.. ( 2004;). Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. . Mol Microbiol 53:, 419–432. [CrossRef][PubMed]
    [Google Scholar]
  35. Leonard T. A., Butler P. J., Löwe J.. ( 2005;). Bacterial chromosome segregation: structure and DNA binding of the Soj dimer – a conserved biological switch. . EMBO J 24:, 270–282. [CrossRef][PubMed]
    [Google Scholar]
  36. Lim H. C., Surovtsev I. V., Beltran B. G., Huang F., Bewersdorf J., Jacobs-Wagner C.. ( 2014;). Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. . Elife 3:, e02758. [CrossRef][PubMed]
    [Google Scholar]
  37. Lin D. C.-H., Grossman A. D.. ( 1998;). Identification and characterization of a bacterial chromosome partitioning site. . Cell 92:, 675–685. [CrossRef][PubMed]
    [Google Scholar]
  38. Livny J., Yamaichi Y., Waldor M. K.. ( 2007;). Distribution of centromere-like parS sites in bacteria: insights from comparative genomics. . J Bacteriol 189:, 8693–8703. [CrossRef][PubMed]
    [Google Scholar]
  39. Ludwiczak M., Dolowy P., Markowska A., Szarlak J., Kulinska A., Jagura-Burdzy G.. ( 2013;). Global transcriptional regulator KorC coordinates expression of three backbone modules of the broad-host-range RA3 plasmid from IncU incompatibility group. . Plasmid 70:, 131–145. [CrossRef][PubMed]
    [Google Scholar]
  40. Lukaszewicz M., Kostelidou K., Bartosik A. A., Cooke G. D., Thomas C. M., Jagura-Burdzy G.. ( 2002;). Functional dissection of the ParB homologue (KorB) from IncP-1 plasmid RK2. . Nucleic Acids Res 30:, 1046–1055. [CrossRef][PubMed]
    [Google Scholar]
  41. Lutkenhaus J., Sundaramoorthy M.. ( 2003;). MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation. . Mol Microbiol 48:, 295–303. [CrossRef][PubMed]
    [Google Scholar]
  42. Mierzejewska J., Jagura-Burdzy G.. ( 2012;). Prokaryotic ParA–ParB–parS system links bacterial chromosome segregation with the cell cycle. . Plasmid 67:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  43. Mierzejewska J., Bartosik A. A., Macioszek M., Płochocka D., Thomas C. M., Jagura-Burdzy G.. ( 2012;). Identification of C-terminal hydrophobic residues important for dimerization and all known functions of ParB of Pseudomonas aeruginosa. . Microbiology 158:, 1183–1195. [CrossRef][PubMed]
    [Google Scholar]
  44. Miller J. H.. ( 1972;). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  45. Motallebi-Veshareh M., Rouch D. A., Thomas C. M.. ( 1990;). A family of ATPases involved in active partitioning of diverse bacterial plasmids. . Mol Microbiol 4:, 1455–1463. [CrossRef][PubMed]
    [Google Scholar]
  46. Mullis K., Faloona F., Scharf S., Saiki R., Horn G., Erlich H.. ( 1986;). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. . Cold Spring Harb Symp Quant Biol 51:, 263–273. [CrossRef][PubMed]
    [Google Scholar]
  47. Murray H., Errington J.. ( 2008;). Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. . Cell 135:, 74–84. [CrossRef][PubMed]
    [Google Scholar]
  48. Ogura Y., Ogasawara N., Harry E. J., Moriya S.. ( 2003;). Increasing the ratio of Soj to Spo0J promotes replication initiation in Bacillus subtilis. . J Bacteriol 185:, 6316–6324. [CrossRef][PubMed]
    [Google Scholar]
  49. Papadopoulos J. S., Agarwala R.. ( 2007;). cobalt: constraint-based alignment tool for multiple protein sequences. . Bioinformatics 23:, 1073–1079. [CrossRef][PubMed]
    [Google Scholar]
  50. Pratto F., Cicek A., Weihofen W. A., Lurz R., Saenger W., Alonso J. C.. ( 2008;). Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation. . Nucleic Acids Res 36:, 3676–3689. [CrossRef][PubMed]
    [Google Scholar]
  51. Ptacin J. L., Lee S. F., Garner E. C., Toro E., Eckart M., Comolli L. R., Moerner W. E., Shapiro L.. ( 2010;). A spindle-like apparatus guides bacterial chromosome segregation. . Nat Cell Biol 12:, 791–798. [CrossRef][PubMed]
    [Google Scholar]
  52. Rashid M. H., Kornberg A.. ( 2000;). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A 97:, 4885–4890. [CrossRef][PubMed]
    [Google Scholar]
  53. Ravin N. V., Rech J., Lane D.. ( 2003;). Mapping of functional domains in F plasmid partition proteins reveals a bipartite SopB-recognition domain in SopA. . J Mol Biol 329:, 875–889. [CrossRef][PubMed]
    [Google Scholar]
  54. Ringgaard S., Schirner K., Davis B. M., Waldor M. K.. ( 2011;). A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins. . Genes Dev 25:, 1544–1555. [CrossRef][PubMed]
    [Google Scholar]
  55. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: A Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  56. Schofield W. B., Lim H. C., Jacobs-Wagner C.. ( 2010;). Cell cycle coordination and regulation of bacterial chromosome segregation dynamics by polarly localized proteins. . EMBO J 29:, 3068–3081. [CrossRef][PubMed]
    [Google Scholar]
  57. Scholefield G., Whiting R., Errington J., Murray H.. ( 2011;). Spo0J regulates the oligomeric state of Soj to trigger its switch from an activator to an inhibitor of DNA replication initiation. . Mol Microbiol 79:, 1089–1100. [CrossRef][PubMed]
    [Google Scholar]
  58. Schumacher M. A., Ye Q., Barge M. T., Zampini M., Barillà D., Hayes F.. ( 2012;). Structural mechanism of ATP-induced polymerization of the partition factor ParF: implications for DNA segregation. . J Biol Chem 287:, 26146–26154. [CrossRef][PubMed]
    [Google Scholar]
  59. Simon R., O’Connell M., Labes M., Pühler A.. ( 1986;). Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. . Methods Enzymol 118:, 640–659. [CrossRef][PubMed]
    [Google Scholar]
  60. Söding J., Biegert A., Lupas A. N.. ( 2005;). The HHpred interactive server for protein homology detection and structure prediction. . Nucleic Acids Res 33: (Web Server issue), W244–W248. [CrossRef][PubMed]
    [Google Scholar]
  61. Spratt B. G., Hedge P. J., te Heesen S., Edelman A., Broome-Smith J. K.. ( 1986;). Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. . Gene 41:, 337–342. [CrossRef][PubMed]
    [Google Scholar]
  62. Sullivan N. L., Marquis K. A., Rudner D. Z.. ( 2009;). Recruitment of SMC by ParB–parS organizes the origin region and promotes efficient chromosome segregation. . Cell 137:, 697–707. [CrossRef][PubMed]
    [Google Scholar]
  63. Surtees J. A., Funnell B. E.. ( 1999;). P1 ParB domain structure includes two independent multimerization domains. . J Bacteriol 181:, 5898–5908.[PubMed]
    [Google Scholar]
  64. Thanbichler M., Shapiro L.. ( 2006;). MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. . Cell 126:, 147–162. [CrossRef][PubMed]
    [Google Scholar]
  65. Umbarger M. A., Toro E., Wright M. A., Porreca G. J., Baù D., Hong S.-H., Fero M. J., Zhu L. J., Marti-Renom M. A.. & other authors ( 2011;). The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. . Mol Cell 44:, 252–264. [CrossRef][PubMed]
    [Google Scholar]
  66. Vecchiarelli A. G., Han Y. W., Tan X., Mizuuchi M., Ghirlando R., Biertümpfel C., Funnell B. E., Mizuuchi K.. ( 2010;). ATP control of dynamic P1 ParA–DNA interactions: a key role for the nucleoid in plasmid partition. . Mol Microbiol 78:, 78–91.[PubMed]
    [Google Scholar]
  67. Vecchiarelli A. G., Hwang L. C., Mizuuchi K.. ( 2013;). Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism. . Proc Natl Acad Sci U S A 110:, E1390–E1397. [CrossRef][PubMed]
    [Google Scholar]
  68. Yamaichi Y., Niki H.. ( 2000;). Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. . Proc Natl Acad Sci U S A 97:, 14656–14661. [CrossRef][PubMed]
    [Google Scholar]
  69. Yamaichi Y., Bruckner R., Ringgaard S., Möll A., Cameron D. E., Briegel A., Jensen G. J., Davis B. M., Waldor M. K.. ( 2012;). A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole. . Genes Dev 26:, 2348–2360. [CrossRef][PubMed]
    [Google Scholar]
  70. Yanisch-Perron C., Vieira J., Messing J.. ( 1985;). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. . Gene 33:, 103–119. [CrossRef][PubMed]
    [Google Scholar]
  71. Ye Y., Godzik A.. ( 2003;). Flexible structure alignment by chaining aligned fragment pairs allowing twists. . Bioinformatics 19: (Suppl 2), ii246–ii255. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081216-0
Loading
/content/journal/micro/10.1099/mic.0.081216-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error