1887

Abstract

The environmental organism is one of the primary causes of numerous nosocomial outbreaks and opportunistic infections. Multi-drug resistance is now a common feature among clinical isolates, complicating the efficacy of treatment. Recent reports have attributed antibiotic resistance to altered porin expression as well as perturbation of the intrinsic AmpC beta-lactamase production pathway. In this study, we aimed to genetically correlate the absence of OmpF and OmpC classical porins with increased antibiotic resistance. In generating isogenic porin mutant strains, we avoided incorporating additional resistance through the use of antibiotic cassettes in gene replacement and adopted an alternative strategy in creating clean unmarked mutant strains. We found that lack of OmpF, but not OmpC, significantly increased antibiotic MIC values to the beta-lactam drugs such as ampicillin and cefoxitin as well as to nitrofurantoin. Furthermore, we found that cefoxitin did not induce intrinsic AmpC beta-lactamase production, indicating that the increased MIC values were a result of reduced permeability of cefoxitin due to the lack of OmpF. Genetic deletion of both and did not compromise the integrity of the bacterial cell envelope in optimal growth conditions, suggesting that other outer-membrane porins may function in a compensatory role to facilitate nutrient uptake and cell envelope integrity. Taken together, to our knowledge this is the first study that genetically correlates increased antibiotic resistance with altered porin expression in .

Funding
This study was supported by the:
  • Natural Sciences and Engineering Research Council of Canada (NSERC)
  • CFI-LOF
  • University of Manitoba
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081166-0
2014-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1882.html?itemId=/content/journal/micro/10.1099/mic.0.081166-0&mimeType=html&fmt=ahah

References

  1. Barbosa T. M., Levy S. B. ( 2000). Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol 182:3467–3474 [View Article][PubMed]
    [Google Scholar]
  2. Begic S., Worobec E. A. ( 2006). Regulation of Serratia marcescens ompF and ompC porin genes in response to osmotic stress, salicylate, temperature and pH. Microbiology 152:485–491 [View Article][PubMed]
    [Google Scholar]
  3. Choi K. H., Schweizer H. P. ( 2005). An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol 5:30 [View Article][PubMed]
    [Google Scholar]
  4. Choi K. H., Mima T., Casart Y., Rholl D., Kumar A., Beacham I. R., Schweizer H. P. ( 2008). Genetic tools for select-agent-compliant manipulation of Burkholderia pseudomallei . Appl Environ Microbiol 74:1064–1075 [View Article][PubMed]
    [Google Scholar]
  5. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. ( 1992). Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733 [View Article][PubMed]
    [Google Scholar]
  6. De Feyter R., Yang Y., Gabriel D. W. ( 1993). Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Mol Plant Microbe Interact 6:225–237 [View Article][PubMed]
    [Google Scholar]
  7. Fairman J. W., Noinaj N., Buchanan S. K. ( 2011). The structural biology of β-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 21:523–531 [View Article][PubMed]
    [Google Scholar]
  8. Fernández L., Hancock R. E. ( 2012). Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 25:661–681 [View Article][PubMed]
    [Google Scholar]
  9. Finan T. M., Kunkel B., De Vos G. F., Signer E. R. ( 1986). Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72[PubMed]
    [Google Scholar]
  10. Flyg C., Kenne K., Boman H. G. ( 1980). Insect pathogenic properties of Serratia marcescens: phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence to Drosophila . J Gen Microbiol 120:173–181[PubMed]
    [Google Scholar]
  11. Hall M. N., Silhavy T. J. ( 1981). The ompB locus and the regulation of the major outer membrane porin proteins of Escherichia coli K12. J Mol Biol 146:23–43 [View Article][PubMed]
    [Google Scholar]
  12. Hashizume T., Sanada M., Nakagawa S., Tanaka N. ( 1993). Alteration in expression of Serratia marcescens porins associated with decreased outer membrane permeability. J Antimicrob Chemother 31:21–28 [View Article][PubMed]
    [Google Scholar]
  13. Hechler U., van den Weghe M., Martin H. H., Frère J. M. ( 1989). Overproduced beta-lactamase and the outer-membrane barrier as resistance factors in Serratia marcescens highly resistant to beta-lactamase-stable beta-lactam antibiotics. J Gen Microbiol 135:1275–1290[PubMed]
    [Google Scholar]
  14. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. ( 1998). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86 [View Article][PubMed]
    [Google Scholar]
  15. Hutsul J. A., Worobec E. A. ( 1994). Molecular characterization of a 40 kDa OmpC-like porin from Serratia marcescens . Microbiology 140:379–387 [View Article][PubMed]
    [Google Scholar]
  16. Hutsul J. A., Worobec E. A. ( 1997). Molecular characterization of the Serratia marcescens OmpF porin, and analysis of S. marcescens OmpF and OmpC osmoregulation. Microbiology 143:2797–2806 [View Article][PubMed]
    [Google Scholar]
  17. Jacoby G. A. ( 2009). AmpC β-lactamases. Clin Microbiol Rev 22:161–182 [View Article][PubMed]
    [Google Scholar]
  18. Koressaar T., Remm M. ( 2007). Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291 [View Article][PubMed]
    [Google Scholar]
  19. Kumar A., Hajjar E., Ruggerone P., Ceccarelli M. ( 2010). Structural and dynamical properties of the porins OmpF and OmpC: insights from molecular simulations. J Phys Condens Matter 22:454125 [View Article][PubMed]
    [Google Scholar]
  20. Kurz C. L., Chauvet S., Andrès E., Aurouze M., Vallet I., Michel G. P. F., Uh M., Celli J., Filloux A. & other authors ( 2003). Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. EMBO J 7:1451–1460 [CrossRef]
    [Google Scholar]
  21. Lamarche M. G., Wanner B. L., Crépin S., Harel J. ( 2008). The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev 32:461–473 [View Article][PubMed]
    [Google Scholar]
  22. Laupland K. B., Parkins M. D., Gregson D. B., Church D. L., Ross T., Pitout J. D. ( 2008). Population-based laboratory surveillance for Serratia species isolates in a large Canadian health region. Eur J Clin Microbiol Infect Dis 27:89–95 [View Article][PubMed]
    [Google Scholar]
  23. Mahlen S. D. ( 2011). Serratia infections: from military experiments to current practice. Clin Microbiol Rev 24:755–791 [View Article][PubMed]
    [Google Scholar]
  24. Mahlen S. D., Morrow S. S., Abdalhamid B., Hanson N. D. ( 2003). Analyses of ampC gene expression in Serratia marcescens reveal new regulatory properties. J Antimicrob Chemother 51:791–802 [View Article][PubMed]
    [Google Scholar]
  25. Masi M., Pagès J. M. ( 2013). Structure, function and regulation of outer membrane proteins involved in drug transport in Enterobactericeae: the OmpF/C–TolC case. Open Microbiol J 7:22–33 [View Article][PubMed]
    [Google Scholar]
  26. Namdari H., Tan T. Y., Dowzicky M. J. ( 2012). Activity of tigecycline and comparators against skin and skin structure pathogens: global results of the Tigecycline evaluation and surveillance trial, 2004–2009. Int J Infect Dis 16:e60–e66 [View Article][PubMed]
    [Google Scholar]
  27. O’Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. ( 1972). Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1:283–288 [View Article][PubMed]
    [Google Scholar]
  28. Pagel M., Simonet V., Li J., Lallemand M., Lauman B., Delcour A. H. ( 2007). Phenotypic characterization of pore mutants of the Vibrio cholerae porin OmpU. J Bacteriol 189:8593–8600 [View Article][PubMed]
    [Google Scholar]
  29. Pagès J. M., James C. E., Winterhalter M. ( 2008). The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 6:893–903 [View Article][PubMed]
    [Google Scholar]
  30. Petty N. K., Foulds I. J., Pradel E., Ewbank J. J., Salmond G. P. C. ( 2006). A generalized transducing phage (phiIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. Microbiology 152:1701–1708 [View Article][PubMed]
    [Google Scholar]
  31. Pfeifer Y., Cullik A., Witte W. ( 2010). Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol 300:371–379 [View Article][PubMed]
    [Google Scholar]
  32. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  33. Schirmer T., Keller T. A., Wang Y. F., Rosenbusch J. P. ( 1995). Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science 267:512–514 [View Article][PubMed]
    [Google Scholar]
  34. Schmidtke A. J., Hanson N. D. ( 2008). Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa . Antimicrob Agents Chemother 52:3922–3927 [View Article][PubMed]
    [Google Scholar]
  35. Silhavy T. J., Kahne D., Walker S. ( 2010). The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414 [View Article][PubMed]
    [Google Scholar]
  36. Skorupski K., Taylor R. K. ( 1996). Positive selection vectors for allelic exchange. Gene 169:47–52 [View Article][PubMed]
    [Google Scholar]
  37. Suh B., Bae I. K., Kim J., Jeong S. H., Yong D., Lee K. ( 2010). Outbreak of meropenem-resistant Serratia marcescens comediated by chromosomal AmpC β-lactamase overproduction and outer membrane protein loss. Antimicrob Agents Chemother 54:5057–5061 [View Article][PubMed]
    [Google Scholar]
  38. Tsai Y. K., Fung C. P., Lin J. C., Chen J. H., Chang F. Y., Chen T. L., Siu L. K. ( 2011). Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob Agents Chemother 55:1485–1493 [View Article][PubMed]
    [Google Scholar]
  39. Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., Rozen S. G. ( 2012). Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115 [View Article][PubMed]
    [Google Scholar]
  40. Vidal S., Bredin J., Pagès J. M., Barbe J. ( 2005). Beta-lactam screening by specific residues of the OmpF eyelet. J Med Chem 48:1395–1400 [View Article][PubMed]
    [Google Scholar]
  41. Weindorf H., Schmidt H., Martin H. H. ( 1998). Contribution of overproduced chromosomal β-lactamase and defective outer membrane porins to resistance to extended-spectrum β-lactam antibiotics in Serratia marcescens . J Antimicrob Chemother 41:189–195 [View Article][PubMed]
    [Google Scholar]
  42. Yoshimura F., Nikaido H. ( 1985). Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 27:84–92 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081166-0
Loading
/content/journal/micro/10.1099/mic.0.081166-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error