1887

Abstract

The mithramycin biosynthesis gene cluster of ATCC 12956 contains 34 ORFs and includes two putative regulatory genes ( and ), which encode proteins of the SARP ( antibiotic regulatory protein) and PadR transcriptional regulator families, respectively. MtmR was proposed to behave as a positive regulator of mithramycin biosynthesis. Inactivation and overexpression of indicated that it is also a positive regulator of mithramycin biosynthesis, being non-essential but required to maintain high levels of mithramycin production in the producer strain. Transcriptional analyses by reverse transcription PCR and quantitative real-time PCR of mithramycin genes, and promoter-probe assays in polyketide synthase and regulatory mutants and the WT strain, and in the heterologous host , were carried out to analyse the role of MtmR and MtrY in the regulation of the mithramycin gene cluster. These experiments revealed that MtmR had a positive role, activating expression of at least six polycistronic units (, , , , and ) and one monocistronic unit () in the mithramycin gene cluster. However, MtrY played a dual role in the mithramycin gene cluster: (i) repressing the expression of resistance genes and its coding gene itself by controlling the activity of the promoter that directs expression of the regulator and resistance genes, with this repression being released in the presence of mithramycin; and (ii) enhancing the expression of mithramycin biosynthesis genes when mithramycin is present, by interacting with the promoter that controls expression of the regulator, amongst others.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080895-0
2015-02-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/272.html?itemId=/content/journal/micro/10.1099/mic.0.080895-0&mimeType=html&fmt=ahah

References

  1. Aguirrezabalaga I., Olano C., Allende N., Rodriguez L., Braña A. F., Méndez C., Salas J. A. 2000; Identification and expression of genes involved in biosynthesis of l-oleandrose and its intermediate l-olivose in the oleandomycin producer Streptomyces antibioticus. Antimicrob Agents Chemother 44:1266–1275 [View Article][PubMed]
    [Google Scholar]
  2. Agustiandari H., Lubelski J., van den Berg van Saparoea H. B., Kuipers O. P., Driessen A. J. M. 2011; LmrR-mediated gene regulation of multidrug resistance in Lactococcus lactis. Microbiology 157:1519–1530 [View Article][PubMed]
    [Google Scholar]
  3. Ajithkumar V., Prasad R. 2010; Modulation of dnrN expression by intracellular levels of DnrO and daunorubicin in Streptomyces peucetius. FEMS Microbiol Lett 306:160–167 [View Article][PubMed]
    [Google Scholar]
  4. Albertini V., Jain A., Vignati S., Napoli S., Rinaldi A., Kwee I., Nur-e-Alam M., Bergant J., Bertoni F.& other authors ( 2006; Novel GC-rich DNA-binding compound produced by a genetically engineered mutant of the mithramycin producer Streptomyces argillaceus exhibits improved transcriptional repressor activity: implications for cancer therapy. Nucleic Acids Res 34:1721–1734 [View Article][PubMed]
    [Google Scholar]
  5. Arias P., Fernández-Moreno M. A., Malpartida F. 1999; Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968[PubMed]
    [Google Scholar]
  6. Arita K., Hashimoto H., Igari K., Akaboshi M., Kutsuna S., Sato M., Shimizu T. 2007; Structural and biochemical characterization of a cyanobacterium circadian clock-modifier protein. J Biol Chem 282:1128–1135 [View Article][PubMed]
    [Google Scholar]
  7. Barthelmebs L., Lecomte B., Divies C., Cavin J.-F. 2000; Inducible metabolism of phenolic acids in Pediococcus pentosaceus is encoded by an autoregulated operon which involves a new class of negative transcriptional regulator. J Bacteriol 182:6724–6731 [View Article][PubMed]
    [Google Scholar]
  8. Bérdy J. 2012; Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo) 65:385–395 [View Article][PubMed]
    [Google Scholar]
  9. Bibb M. J. 2005; Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215 [View Article][PubMed]
    [Google Scholar]
  10. Burton K. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62:315–323[PubMed]
    [Google Scholar]
  11. Chater K. F. 1993; Genetics of differentiation in Streptomyces. Annu Rev Microbiol 47:685–711 [View Article][PubMed]
    [Google Scholar]
  12. Chatterjee S., Zaman K., Ryu H., Conforto A., Ratan R. R. 2001; Sequence-selective DNA binding drugs mithramycin A and chromomycin A3 are potent inhibitors of neuronal apoptosis induced by oxidative stress and DNA damage in cortical neurons. Ann Neurol 49:345–354 [View Article][PubMed]
    [Google Scholar]
  13. Cundliffe E. 2006; Antibiotic production by actinomycetes: the Janus faces of regulation. J Ind Microbiol Biotechnol 33:500–506 [View Article][PubMed]
    [Google Scholar]
  14. Cundliffe E. 2008; Control of tylosin biosynthesis in Streptomyces fradiae. J Microbiol Biotechnol 18:1485–1491[PubMed]
    [Google Scholar]
  15. De Silva R. S., Kovacikova G., Lin W., Taylor R. K., Skorupski K., Kull F. J. 2005; Crystal structure of the virulence gene activator AphA from Vibrio cholerae reveals it is a novel member of the winged helix transcription factor superfamily. J Biol Chem 280:13779–13783 [View Article][PubMed]
    [Google Scholar]
  16. Fernández E., Weissbach U., Sánchez Reillo C., Braña A. F., Méndez C., Rohr J., Salas J. A. 1998; Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J Bacteriol 180:4929–4937[PubMed]
    [Google Scholar]
  17. Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F. 1991; The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell 66:769–780 [View Article][PubMed]
    [Google Scholar]
  18. Fibriansah G., Kovács A. T., Pool T. J., Boonstra M., Kuipers O. P., Thunnissen A. M. 2012; Crystal structures of two transcriptional regulators from Bacillus cereus define the conserved structural features of a PadR subfamily. PLoS One 7:e48015 [View Article][PubMed]
    [Google Scholar]
  19. Flärdh K., Buttner M. J. 2009; Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49 [View Article][PubMed]
    [Google Scholar]
  20. García B., González-Sabín J., Menéndez N., Braña A. F., Núñez L. E., Morís F., Salas J. A., Méndez C. 2011; The chromomycin CmmA acetyltransferase: a membrane-bound enzyme as a tool for increasing structural diversity of the antitumour mithramycin. Microb Biotechnol 4:226–238 [View Article][PubMed]
    [Google Scholar]
  21. Garcia-Bernardo J., Braña A. F., Méndez C., Salas J. A. 2000; Insertional inactivation of mtrX and mtrY genes from the mithramycin gene cluster affects production and growth of the producer organism Streptomyces argillaceus. FEMS Microbiol Lett 186:61–65 [View Article][PubMed]
    [Google Scholar]
  22. Gury J., Barthelmebs L., Tran N. P., Diviès C., Cavin J.-F. 2004; Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of Lactobacillus plantarum. Appl Environ Microbiol 70:2146–2153 [View Article][PubMed]
    [Google Scholar]
  23. Huang J., Shi J., Molle V., Sohlberg B., Weaver D., Bibb M. J., Karoonuthaisiri N., Lih C. J., Kao C. M.& other authors ( 2005; Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol 58:1276–1287 [View Article][PubMed]
    [Google Scholar]
  24. Huillet E., Velge P., Vallaeys T., Pardon P. 2006; LadR, a new PadR-related transcriptional regulator from Listeria monocytogenes, negatively regulates the expression of the multidrug efflux pump MdrL. FEMS Microbiol Lett 254:87–94 [View Article][PubMed]
    [Google Scholar]
  25. Jia Z., Zhang J., Wei D., Wang L., Yuan P., Le X., Li Q., Yao J., Xie K. 2007; Molecular basis of the synergistic antiangiogenic activity of bevacizumab and mithramycin A. Cancer Res 67:4878–4885 [View Article][PubMed]
    [Google Scholar]
  26. Jia Z., Gao Y., Wang L., Li Q., Zhang J., Le X., Wei D., Yao J. C., Chang D. Z.& other authors ( 2010; Combined treatment of pancreatic cancer with mithramycin A and tolfenamic acid promotes Sp1 degradation and synergistic antitumor activity. Cancer Res 70:1111–1119 [View Article][PubMed]
    [Google Scholar]
  27. Jiang H., Hutchinson C. R. 2006; Feedback regulation of doxorubicin biosynthesis in Streptomyces peucetius. Res Microbiol 157:666–674 [View Article][PubMed]
    [Google Scholar]
  28. Kieser T., Bibb M., Chater K., Butter M., Hopwood D. A. 2000 Practical Streptomyces Genetics: A Laboratory Manual Norwich: The John Innes Foundation;
    [Google Scholar]
  29. Kovacikova G., Lin W., Skorupski K. 2003; The virulence activator AphA links quorum sensing to pathogenesis and physiology in Vibrio cholerae by repressing the expression of a penicillin amidase gene on the small chromosome. J Bacteriol 185:4825–4836 [View Article][PubMed]
    [Google Scholar]
  30. Le T. B. K., Fiedler H.-P., den Hengst C. D., Ahn S. K., Maxwell A., Buttner M. J. 2009; Coupling of the biosynthesis and export of the DNA gyrase inhibitor simocyclinone in Streptomyces antibioticus. Mol Microbiol 72:1462–1474 [View Article][PubMed]
    [Google Scholar]
  31. Liu G., Chater K. F., Chandra G., Niu G., Tan H. 2013; Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77:112–143 [View Article][PubMed]
    [Google Scholar]
  32. Lombó F., Blanco G., Fernández E., Méndez C., Salas J. A. 1996; Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin. Gene 172:87–91 [View Article][PubMed]
    [Google Scholar]
  33. Lombó F., Braña A. F., Méndez C., Salas J. A. 1999; The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 181:642–647[PubMed]
    [Google Scholar]
  34. Lombó F., Menéndez N., Salas J. A., Méndez C. 2006; The aureolic acid family of antitumor compounds: structure, mode of action, biosynthesis, and novel derivatives. Appl Microbiol Biotechnol 73:1–14 [View Article][PubMed]
    [Google Scholar]
  35. Lozano M. J., Remsing L. L., Quirós L. M., Braña A. F., Fernández E., Sánchez C., Méndez C., Rohr J., Salas J. A. 2000; Characterization of two polyketide methyltransferases involved in the biosynthesis of the antitumor drug mithramycin by Streptomyces argillaceus. J Biol Chem 275:3065–3074 [View Article][PubMed]
    [Google Scholar]
  36. Madoori P. K., Agustiandari H., Driessen A. J., Thunnissen A. M. 2009; Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition. EMBO J 28:156–166 [View Article][PubMed]
    [Google Scholar]
  37. Martín J. F., Liras P. 2010; Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol 13:263–273 [View Article][PubMed]
    [Google Scholar]
  38. Martín J. F., Sola-Landa A., Santos-Beneit F., Fernández-Martínez L. T., Prieto C., Rodríguez-García A. 2011; Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb Biotechnol 4:165–174 [View Article][PubMed]
    [Google Scholar]
  39. Méndez C., Braña A. F., Manzanal M. B., Hardisson C. 1985; Role of substrate mycelium in colony development in Streptomyces. Can J Microbiol 31:446–450 [View Article][PubMed]
    [Google Scholar]
  40. Newman D. J., Cragg G. M. 2012; Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335 [View Article][PubMed]
    [Google Scholar]
  41. Núñez L. E., Nybo S. E., González-Sabín J., Pérez M., Menéndez N., Braña A. F., Shaaban K. A., He M., Morís F.& other authors ( 2012; A novel mithramycin analogue with high antitumor activity and less toxicity generated by combinatorial biosynthesis. J Med Chem 55:5813–5825 [View Article][PubMed]
    [Google Scholar]
  42. Olano C., Wilkinson B., Sánchez C., Moss S. J., Sheridan R., Math V., Weston A. J., Braña A. F., Martin C. J.& other authors ( 2004; Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: cluster analysis and assignment of functions. Chem Biol 11:87–97[PubMed]
    [Google Scholar]
  43. Olano C., Lombó F., Méndez C., Salas J. A. 2008; Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng 10:281–292 [View Article][PubMed]
    [Google Scholar]
  44. Otten S. L., Olano C., Hutchinson C. R. 2000; The dnrO gene encodes a DNA-binding protein that regulates daunorubicin production in Streptomyces peucetius by controlling expression of the dnrN pseudo response regulator gene. Microbiology 146:1457–1468[PubMed]
    [Google Scholar]
  45. Pérez M., Baig I., Braña A. F., Salas J. A., Rohr J., Méndez C. 2008; Generation of new derivatives of the antitumor antibiotic mithramycin by altering the glycosylation pattern through combinatorial biosynthesis. ChemBioChem 9:2295–2304 [View Article][PubMed]
    [Google Scholar]
  46. Remsing L. L., González A. M., Nur-e-Alam M., Fernández-Lozano M. J., Braña A. F., Rix U., Oliveira M. A., Méndez C., Salas J. A., Rohr J. 2003; Mithramycin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA, and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthesis. J Am Chem Soc 125:5745–5753 [View Article][PubMed]
    [Google Scholar]
  47. Retzlaff L., Distler J. 1995; The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Mol Microbiol 18:151–162 [View Article][PubMed]
    [Google Scholar]
  48. Rodríguez M., Núñez L. E., Braña A. F., Méndez C., Salas J. A., Blanco G. 2008; Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya. Mol Microbiol 69:633–645 [View Article][PubMed]
    [Google Scholar]
  49. Rodríguez-García A., Barreiro C., Santos-Beneit F., Sola-Landa A., Martín J. F. 2007; Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DeltaphoP mutant. Proteomics 7:2410–2429 [View Article][PubMed]
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Santos-Beneit F., Rodríguez-García A., Franco-Domínguez E., Martín J. F. 2008; Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology 154:2356–2370 [View Article][PubMed]
    [Google Scholar]
  52. Sheldon P. J., Busarow S. B., Hutchinson C. R. 2002; Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol 44:449–460 [View Article][PubMed]
    [Google Scholar]
  53. Tahlan K., Ahn S. K., Sing A., Bodnaruk T. D., Willems A. R., Davidson A. R., Nodwell J. R. 2007; Initiation of actinorhodin export in Streptomyces coelicolor. Mol Microbiol 63:951–961 [View Article][PubMed]
    [Google Scholar]
  54. Tran N. P., Gury J., Dartois V., Nguyen T. K., Seraut H., Barthelmebs L., Gervais P., Cavin J.-F. 2008; Phenolic acid-mediated regulation of the padC gene, encoding the phenolic acid decarboxylase of Bacillus subtilis. J Bacteriol 190:3213–3224 [View Article][PubMed]
    [Google Scholar]
  55. van Wezel G. P., McDowall K. J. 2011; The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28:1311–1333 [View Article][PubMed]
    [Google Scholar]
  56. Vieira J., Messing J. 1991; New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100:189–194 [View Article][PubMed]
    [Google Scholar]
  57. Wietzorrek A., Bibb M. 1997; A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25:1181–1184 [View Article][PubMed]
    [Google Scholar]
  58. Xu Y., Willems A., Au-Yeung C., Tahlan K., Nodwell J. R. 2012; A two-step mechanism for the activation of actinorhodin export and resistance in Streptomyces coelicolor.. MBio 3:e00191–e12 [View Article][PubMed]
    [Google Scholar]
  59. Zabala D., Braña A. F., Flórez A. B., Salas J. A., Méndez C. 2013; Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. Metab Eng 20:187–197 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080895-0
Loading
/content/journal/micro/10.1099/mic.0.080895-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error