1887

Abstract

The mithramycin biosynthesis gene cluster of ATCC 12956 contains 34 ORFs and includes two putative regulatory genes ( and ), which encode proteins of the SARP ( antibiotic regulatory protein) and PadR transcriptional regulator families, respectively. MtmR was proposed to behave as a positive regulator of mithramycin biosynthesis. Inactivation and overexpression of indicated that it is also a positive regulator of mithramycin biosynthesis, being non-essential but required to maintain high levels of mithramycin production in the producer strain. Transcriptional analyses by reverse transcription PCR and quantitative real-time PCR of mithramycin genes, and promoter-probe assays in polyketide synthase and regulatory mutants and the WT strain, and in the heterologous host , were carried out to analyse the role of MtmR and MtrY in the regulation of the mithramycin gene cluster. These experiments revealed that MtmR had a positive role, activating expression of at least six polycistronic units (, , , , and ) and one monocistronic unit () in the mithramycin gene cluster. However, MtrY played a dual role in the mithramycin gene cluster: (i) repressing the expression of resistance genes and its coding gene itself by controlling the activity of the promoter that directs expression of the regulator and resistance genes, with this repression being released in the presence of mithramycin; and (ii) enhancing the expression of mithramycin biosynthesis genes when mithramycin is present, by interacting with the promoter that controls expression of the regulator, amongst others.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080895-0
2015-02-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/272.html?itemId=/content/journal/micro/10.1099/mic.0.080895-0&mimeType=html&fmt=ahah

References

  1. Aguirrezabalaga I., Olano C., Allende N., Rodriguez L., Braña A. F., Méndez C., Salas J. A.. 2000; Identification and expression of genes involved in biosynthesis of l-oleandrose and its intermediate l-olivose in the oleandomycin producer Streptomyces antibioticus. Antimicrob Agents Chemother44:1266–1275 [CrossRef][PubMed]
    [Google Scholar]
  2. Agustiandari H., Lubelski J., van den Berg van Saparoea H. B., Kuipers O. P., Driessen A. J. M.. 2011; LmrR-mediated gene regulation of multidrug resistance in Lactococcus lactis. Microbiology157:1519–1530 [CrossRef][PubMed]
    [Google Scholar]
  3. Ajithkumar V., Prasad R.. 2010; Modulation of dnrN expression by intracellular levels of DnrO and daunorubicin in Streptomyces peucetius. FEMS Microbiol Lett306:160–167 [CrossRef][PubMed]
    [Google Scholar]
  4. Albertini V., Jain A., Vignati S., Napoli S., Rinaldi A., Kwee I., Nur-e-Alam M., Bergant J., Bertoni F..& other authors ( 2006; Novel GC-rich DNA-binding compound produced by a genetically engineered mutant of the mithramycin producer Streptomyces argillaceus exhibits improved transcriptional repressor activity: implications for cancer therapy. Nucleic Acids Res34:1721–1734 [CrossRef][PubMed]
    [Google Scholar]
  5. Arias P., Fernández-Moreno M. A., Malpartida F.. 1999; Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol181:6958–6968[PubMed]
    [Google Scholar]
  6. Arita K., Hashimoto H., Igari K., Akaboshi M., Kutsuna S., Sato M., Shimizu T.. 2007; Structural and biochemical characterization of a cyanobacterium circadian clock-modifier protein. J Biol Chem282:1128–1135 [CrossRef][PubMed]
    [Google Scholar]
  7. Barthelmebs L., Lecomte B., Divies C., Cavin J.-F.. 2000; Inducible metabolism of phenolic acids in Pediococcus pentosaceus is encoded by an autoregulated operon which involves a new class of negative transcriptional regulator. J Bacteriol182:6724–6731 [CrossRef][PubMed]
    [Google Scholar]
  8. Bérdy J.. 2012; Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot (Tokyo)65:385–395 [CrossRef][PubMed]
    [Google Scholar]
  9. Bibb M. J.. 2005; Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol8:208–215 [CrossRef][PubMed]
    [Google Scholar]
  10. Burton K.. 1956; A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J62:315–323[PubMed]
    [Google Scholar]
  11. Chater K. F.. 1993; Genetics of differentiation in Streptomyces. Annu Rev Microbiol47:685–711 [CrossRef][PubMed]
    [Google Scholar]
  12. Chatterjee S., Zaman K., Ryu H., Conforto A., Ratan R. R.. 2001; Sequence-selective DNA binding drugs mithramycin A and chromomycin A3 are potent inhibitors of neuronal apoptosis induced by oxidative stress and DNA damage in cortical neurons. Ann Neurol49:345–354 [CrossRef][PubMed]
    [Google Scholar]
  13. Cundliffe E.. 2006; Antibiotic production by actinomycetes: the Janus faces of regulation. J Ind Microbiol Biotechnol33:500–506 [CrossRef][PubMed]
    [Google Scholar]
  14. Cundliffe E.. 2008; Control of tylosin biosynthesis in Streptomyces fradiae. J Microbiol Biotechnol18:1485–1491[PubMed]
    [Google Scholar]
  15. De Silva R. S., Kovacikova G., Lin W., Taylor R. K., Skorupski K., Kull F. J.. 2005; Crystal structure of the virulence gene activator AphA from Vibrio cholerae reveals it is a novel member of the winged helix transcription factor superfamily. J Biol Chem280:13779–13783 [CrossRef][PubMed]
    [Google Scholar]
  16. Fernández E., Weissbach U., Sánchez Reillo C., Braña A. F., Méndez C., Rohr J., Salas J. A.. 1998; Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J Bacteriol180:4929–4937[PubMed]
    [Google Scholar]
  17. Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F.. 1991; The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell66:769–780 [CrossRef][PubMed]
    [Google Scholar]
  18. Fibriansah G., Kovács A. T., Pool T. J., Boonstra M., Kuipers O. P., Thunnissen A. M.. 2012; Crystal structures of two transcriptional regulators from Bacillus cereus define the conserved structural features of a PadR subfamily. PLoS One7:e48015 [CrossRef][PubMed]
    [Google Scholar]
  19. Flärdh K., Buttner M. J.. 2009; Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol7:36–49 [CrossRef][PubMed]
    [Google Scholar]
  20. García B., González-Sabín J., Menéndez N., Braña A. F., Núñez L. E., Morís F., Salas J. A., Méndez C.. 2011; The chromomycin CmmA acetyltransferase: a membrane-bound enzyme as a tool for increasing structural diversity of the antitumour mithramycin. Microb Biotechnol4:226–238 [CrossRef][PubMed]
    [Google Scholar]
  21. Garcia-Bernardo J., Braña A. F., Méndez C., Salas J. A.. 2000; Insertional inactivation of mtrX and mtrY genes from the mithramycin gene cluster affects production and growth of the producer organism Streptomyces argillaceus. FEMS Microbiol Lett186:61–65 [CrossRef][PubMed]
    [Google Scholar]
  22. Gury J., Barthelmebs L., Tran N. P., Diviès C., Cavin J.-F.. 2004; Cloning, deletion, and characterization of PadR, the transcriptional repressor of the phenolic acid decarboxylase-encoding padA gene of Lactobacillus plantarum. Appl Environ Microbiol70:2146–2153 [CrossRef][PubMed]
    [Google Scholar]
  23. Huang J., Shi J., Molle V., Sohlberg B., Weaver D., Bibb M. J., Karoonuthaisiri N., Lih C. J., Kao C. M..& other authors ( 2005; Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor. Mol Microbiol58:1276–1287 [CrossRef][PubMed]
    [Google Scholar]
  24. Huillet E., Velge P., Vallaeys T., Pardon P.. 2006; LadR, a new PadR-related transcriptional regulator from Listeria monocytogenes, negatively regulates the expression of the multidrug efflux pump MdrL. FEMS Microbiol Lett254:87–94 [CrossRef][PubMed]
    [Google Scholar]
  25. Jia Z., Zhang J., Wei D., Wang L., Yuan P., Le X., Li Q., Yao J., Xie K.. 2007; Molecular basis of the synergistic antiangiogenic activity of bevacizumab and mithramycin A. Cancer Res67:4878–4885 [CrossRef][PubMed]
    [Google Scholar]
  26. Jia Z., Gao Y., Wang L., Li Q., Zhang J., Le X., Wei D., Yao J. C., Chang D. Z..& other authors ( 2010; Combined treatment of pancreatic cancer with mithramycin A and tolfenamic acid promotes Sp1 degradation and synergistic antitumor activity. Cancer Res70:1111–1119 [CrossRef][PubMed]
    [Google Scholar]
  27. Jiang H., Hutchinson C. R.. 2006; Feedback regulation of doxorubicin biosynthesis in Streptomyces peucetius. Res Microbiol157:666–674 [CrossRef][PubMed]
    [Google Scholar]
  28. Kieser T., Bibb M., Chater K., Butter M., Hopwood D. A.. 2000; Practical Streptomyces Genetics: A Laboratory Manual Norwich: The John Innes Foundation;
    [Google Scholar]
  29. Kovacikova G., Lin W., Skorupski K.. 2003; The virulence activator AphA links quorum sensing to pathogenesis and physiology in Vibrio cholerae by repressing the expression of a penicillin amidase gene on the small chromosome. J Bacteriol185:4825–4836 [CrossRef][PubMed]
    [Google Scholar]
  30. Le T. B. K., Fiedler H.-P., den Hengst C. D., Ahn S. K., Maxwell A., Buttner M. J.. 2009; Coupling of the biosynthesis and export of the DNA gyrase inhibitor simocyclinone in Streptomyces antibioticus. Mol Microbiol72:1462–1474 [CrossRef][PubMed]
    [Google Scholar]
  31. Liu G., Chater K. F., Chandra G., Niu G., Tan H.. 2013; Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev77:112–143 [CrossRef][PubMed]
    [Google Scholar]
  32. Lombó F., Blanco G., Fernández E., Méndez C., Salas J. A.. 1996; Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin. Gene172:87–91 [CrossRef][PubMed]
    [Google Scholar]
  33. Lombó F., Braña A. F., Méndez C., Salas J. A.. 1999; The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol181:642–647[PubMed]
    [Google Scholar]
  34. Lombó F., Menéndez N., Salas J. A., Méndez C.. 2006; The aureolic acid family of antitumor compounds: structure, mode of action, biosynthesis, and novel derivatives. Appl Microbiol Biotechnol73:1–14 [CrossRef][PubMed]
    [Google Scholar]
  35. Lozano M. J., Remsing L. L., Quirós L. M., Braña A. F., Fernández E., Sánchez C., Méndez C., Rohr J., Salas J. A.. 2000; Characterization of two polyketide methyltransferases involved in the biosynthesis of the antitumor drug mithramycin by Streptomyces argillaceus. J Biol Chem275:3065–3074 [CrossRef][PubMed]
    [Google Scholar]
  36. Madoori P. K., Agustiandari H., Driessen A. J., Thunnissen A. M.. 2009; Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition. EMBO J28:156–166 [CrossRef][PubMed]
    [Google Scholar]
  37. Martín J. F., Liras P.. 2010; Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol13:263–273 [CrossRef][PubMed]
    [Google Scholar]
  38. Martín J. F., Sola-Landa A., Santos-Beneit F., Fernández-Martínez L. T., Prieto C., Rodríguez-García A.. 2011; Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb Biotechnol4:165–174 [CrossRef][PubMed]
    [Google Scholar]
  39. Méndez C., Braña A. F., Manzanal M. B., Hardisson C.. 1985; Role of substrate mycelium in colony development in Streptomyces. Can J Microbiol31:446–450 [CrossRef][PubMed]
    [Google Scholar]
  40. Newman D. J., Cragg G. M.. 2012; Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod75:311–335 [CrossRef][PubMed]
    [Google Scholar]
  41. Núñez L. E., Nybo S. E., González-Sabín J., Pérez M., Menéndez N., Braña A. F., Shaaban K. A., He M., Morís F..& other authors ( 2012; A novel mithramycin analogue with high antitumor activity and less toxicity generated by combinatorial biosynthesis. J Med Chem55:5813–5825 [CrossRef][PubMed]
    [Google Scholar]
  42. Olano C., Wilkinson B., Sánchez C., Moss S. J., Sheridan R., Math V., Weston A. J., Braña A. F., Martin C. J..& other authors ( 2004; Biosynthesis of the angiogenesis inhibitor borrelidin by Streptomyces parvulus Tü4055: cluster analysis and assignment of functions. Chem Biol11:87–97[PubMed]
    [Google Scholar]
  43. Olano C., Lombó F., Méndez C., Salas J. A.. 2008; Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering. Metab Eng10:281–292 [CrossRef][PubMed]
    [Google Scholar]
  44. Otten S. L., Olano C., Hutchinson C. R.. 2000; The dnrO gene encodes a DNA-binding protein that regulates daunorubicin production in Streptomyces peucetius by controlling expression of the dnrN pseudo response regulator gene. Microbiology146:1457–1468[PubMed]
    [Google Scholar]
  45. Pérez M., Baig I., Braña A. F., Salas J. A., Rohr J., Méndez C.. 2008; Generation of new derivatives of the antitumor antibiotic mithramycin by altering the glycosylation pattern through combinatorial biosynthesis. ChemBioChem9:2295–2304 [CrossRef][PubMed]
    [Google Scholar]
  46. Remsing L. L., González A. M., Nur-e-Alam M., Fernández-Lozano M. J., Braña A. F., Rix U., Oliveira M. A., Méndez C., Salas J. A., Rohr J.. 2003; Mithramycin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA, and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthesis. J Am Chem Soc125:5745–5753 [CrossRef][PubMed]
    [Google Scholar]
  47. Retzlaff L., Distler J.. 1995; The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Mol Microbiol18:151–162 [CrossRef][PubMed]
    [Google Scholar]
  48. Rodríguez M., Núñez L. E., Braña A. F., Méndez C., Salas J. A., Blanco G.. 2008; Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya. Mol Microbiol69:633–645 [CrossRef][PubMed]
    [Google Scholar]
  49. Rodríguez-García A., Barreiro C., Santos-Beneit F., Sola-Landa A., Martín J. F.. 2007; Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DeltaphoP mutant. Proteomics7:2410–2429 [CrossRef][PubMed]
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Santos-Beneit F., Rodríguez-García A., Franco-Domínguez E., Martín J. F.. 2008; Phosphate-dependent regulation of the low- and high-affinity transport systems in the model actinomycete Streptomyces coelicolor. Microbiology154:2356–2370 [CrossRef][PubMed]
    [Google Scholar]
  52. Sheldon P. J., Busarow S. B., Hutchinson C. R.. 2002; Mapping the DNA-binding domain and target sequences of the Streptomyces peucetius daunorubicin biosynthesis regulatory protein, DnrI. Mol Microbiol44:449–460 [CrossRef][PubMed]
    [Google Scholar]
  53. Tahlan K., Ahn S. K., Sing A., Bodnaruk T. D., Willems A. R., Davidson A. R., Nodwell J. R.. 2007; Initiation of actinorhodin export in Streptomyces coelicolor. Mol Microbiol63:951–961 [CrossRef][PubMed]
    [Google Scholar]
  54. Tran N. P., Gury J., Dartois V., Nguyen T. K., Seraut H., Barthelmebs L., Gervais P., Cavin J.-F.. 2008; Phenolic acid-mediated regulation of the padC gene, encoding the phenolic acid decarboxylase of Bacillus subtilis. J Bacteriol190:3213–3224 [CrossRef][PubMed]
    [Google Scholar]
  55. van Wezel G. P., McDowall K. J.. 2011; The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep28:1311–1333 [CrossRef][PubMed]
    [Google Scholar]
  56. Vieira J., Messing J.. 1991; New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene100:189–194 [CrossRef][PubMed]
    [Google Scholar]
  57. Wietzorrek A., Bibb M.. 1997; A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol25:1181–1184 [CrossRef][PubMed]
    [Google Scholar]
  58. Xu Y., Willems A., Au-Yeung C., Tahlan K., Nodwell J. R.. 2012; A two-step mechanism for the activation of actinorhodin export and resistance in Streptomyces coelicolor.. MBio3:e00191–e12 [CrossRef][PubMed]
    [Google Scholar]
  59. Zabala D., Braña A. F., Flórez A. B., Salas J. A., Méndez C.. 2013; Engineering precursor metabolite pools for increasing production of antitumor mithramycins in Streptomyces argillaceus. Metab Eng20:187–197 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080895-0
Loading
/content/journal/micro/10.1099/mic.0.080895-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error