It takes two to tango: two TatA paralogues and two redox enzyme-specific chaperones are involved in the localization of twin-arginine translocase substrates in Free

Abstract

The food-borne zoonotic pathogen has complex electron transport chains required for growth in the host, many of which contain cofactored periplasmic enzymes localized by the twin-arginine translocase (TAT). We report here the identification of two paralogues of the TatA translocase component in strain NCTC 11168, encoded by () and (). Deletion mutants constructed in either or both of the and genes displayed distinct growth and enzyme activity phenotypes. For sulphite oxidase (SorAB), the multi-copper oxidase (CueO) and alkaline phosphatase (PhoX), complete dependency on TatA1 for correct periplasmic activity was observed. However, the activities of nitrate reductase (NapA), formate dehydrogenase (FdhA) and trimethylamine N-oxide reductase (TorA) were significantly reduced in the mutant. In contrast, the specific rate of fumarate reduction catalysed by the flavoprotein subunit of the methyl menaquinone fumarate reductase (MfrA) was similar in periplasmic fractions of both the and the mutants and only the deletion of both genes abolished activity. Nevertheless, unprocessed MfrA accumulated in the periplasm of the (but not ) mutant, indicating aberrant signal peptide cleavage. Surprisingly, TatA2 lacks two conserved residues (Gln8 and Phe39) known to be essential in TatA and we suggest it is unable to function correctly in the absence of TatA1. Finally, only two TAT chaperones (FdhM and NapD) are encoded in strain NCTC 11168, which mutant studies confirmed are highly specific for formate dehydrogenase and nitrate reductase assembly, respectively. Thus, other TAT substrates must use general chaperones in their biogenesis.

Funding
This study was supported by the:
  • University of Sheffield
  • UK Biotechnology and Biological Sciences Research Council (BBSRC)
  • Don Whitley Scientific Ltd
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080713-0
2014-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/2053.html?itemId=/content/journal/micro/10.1099/mic.0.080713-0&mimeType=html&fmt=ahah

References

  1. Alami M., Lüke I., Deitermann S., Eisner G., Koch H. G., Brunner J., Müller M. ( 2003). Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell 12:937–946 [View Article][PubMed]
    [Google Scholar]
  2. Aldridge C., Ma X., Gerard F., Cline K. ( 2014). Substrate-gated docking of pore subunit Tha4 in the TatC cavity initiates Tat translocase assembly. J Cell Biol 205:51–65 [View Article][PubMed]
    [Google Scholar]
  3. Bachmann J., Bauer B., Zwicker K., Ludwig B., Anderka O. ( 2006). The Rieske protein from Paracoccus denitrificans is inserted into the cytoplasmic membrane by the twin-arginine translocase. FEBS J 273:4817–4830 [View Article][PubMed]
    [Google Scholar]
  4. Baglieri J., Beck D., Vasisht N., Smith C. J., Robinson C. ( 2012). Structure of TatA paralog, TatE, suggests a structurally homogeneous form of Tat protein translocase that transports folded proteins of differing diameter. J Biol Chem 287:7335–7344 [View Article][PubMed]
    [Google Scholar]
  5. Behrendt J., Standar K., Lindenstrauss U., Brüser T. ( 2004). Topological studies on the twin-arginine translocase component TatC. FEMS Microbiol Lett 234:303–308 [View Article][PubMed]
    [Google Scholar]
  6. Beloin C., Valle J., Latour-Lambert P., Faure P., Kzreminski M., Balestrino D., Haagensen J. A., Molin S., Prensier G. & other authors ( 2004). Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674 [View Article][PubMed]
    [Google Scholar]
  7. Berks B. C. ( 1996). A common export pathway for proteins binding complex redox cofactors. Mol Microbiol 22:393–404 [View Article][PubMed]
    [Google Scholar]
  8. Bingham-Ramos L. K., Hendrixson D. R. ( 2008). Characterization of two putative cytochrome c peroxidases of Campylobacter jejuni involved in promoting commensal colonization of poultry. Infect Immun 76:1105–1114 [View Article][PubMed]
    [Google Scholar]
  9. Bogsch E. G., Sargent F., Stanley N. R., Berks B. C., Robinson C., Palmer T. ( 1998). An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem 273:18003–18006 [View Article][PubMed]
    [Google Scholar]
  10. Bolhuis A., Mathers J. E., Thomas J. D., Barrett C. M., Robinson C. ( 2001). TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276:20213–20219 [View Article][PubMed]
    [Google Scholar]
  11. Chang C. Y., Hobley L., Till R., Capeness M., Kanna M., Burtt W., Jagtap P., Aizawa S., Sockett R. E. ( 2011). The Bdellovibrio bacteriovorus twin-arginine transport system has roles in predatory and prey-independent growth. Microbiology 157:3079–3093 [View Article][PubMed]
    [Google Scholar]
  12. Cole C., Barber J. D., Barton G. J. ( 2008). The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:Web Server issueW197–201 [View Article][PubMed]
    [Google Scholar]
  13. Dow J. M., Grahl S., Ward R., Evans R., Byron O., Norman D. G., Palmer T., Sargent F. ( 2014). Characterization of a periplasmic nitrate reductase in complex with its biosynthetic chaperone. FEBS J 281:246–260 [View Article][PubMed]
    [Google Scholar]
  14. Dugar G., Herbig A., Förstner K. U., Heidrich N., Reinhardt R., Nieselt K., Sharma C. M. ( 2013). High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet 9:e1003495 [View Article][PubMed]
    [Google Scholar]
  15. Gaskin D. J. H., Van Vliet A. H. M., Pearson B. M. ( 2007). The Campylobacter genetic toolbox: development of tractable and generally applicable genetic techniques for Campylobacter jejuni. Zoon Publ Health 54:suppl.1101
    [Google Scholar]
  16. Gibson D. G., Young L., Chuang R. Y., Venter J. C., Hutchison C. A. III, Smith H. O. ( 2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345 [View Article][PubMed]
    [Google Scholar]
  17. Gohlke U., Pullan L., McDevitt C. A., Porcelli I., de Leeuw E., Palmer T., Saibil H. R., Berks B. C. ( 2005). The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc Natl Acad Sci U S A 102:10482–10486 [View Article][PubMed]
    [Google Scholar]
  18. Goosens V. J., Monteferrante C. G., van Dijl J. M. ( 2014). The Tat system of Gram-positive bacteria. Biochim Biophys Acta 1843:1698–1706 [View Article][PubMed]
    [Google Scholar]
  19. Graubner W., Schierhorn A., Brüser T. ( 2007). DnaK plays a pivotal role in Tat targeting of CueO and functions beside SlyD as a general Tat signal binding chaperone. J Biol Chem 282:7116–7124 [View Article][PubMed]
    [Google Scholar]
  20. Greene N. P., Porcelli I., Buchanan G., Hicks M. G., Schermann S. M., Palmer T., Berks B. C. ( 2007). Cysteine scanning mutagenesis and disulfide mapping studies of the TatA component of the bacterial twin arginine translocase. J Biol Chem 282:23937–23945 [View Article][PubMed]
    [Google Scholar]
  21. Guccione E., Hitchcock A., Hall S. J., Mulholland F., Shearer N., van Vliet A. H., Kelly D. J. ( 2010). Reduction of fumarate, mesaconate and crotonate by Mfr, a novel oxygen-regulated periplasmic reductase in Campylobacter jejuni. Environ Microbiol 12:576–591 [View Article][PubMed]
    [Google Scholar]
  22. Hall S. J., Hitchcock A., Butler C. S., Kelly D. J. ( 2008). A multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni. J Bacteriol 190:8075–8085 [View Article][PubMed]
    [Google Scholar]
  23. Hatzixanthis K., Palmer T., Sargent F. ( 2003). A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase. Mol Microbiol 49:1377–1390 [View Article][PubMed]
    [Google Scholar]
  24. Heikkilä M. P., Honisch U., Wunsch P., Zumft W. G. ( 2001). Role of the Tat transport system in nitrous oxide reductase translocation and cytochrome cd1 biosynthesis in Pseudomonas stutzeri. J Bacteriol 183:1663–1671 [View Article][PubMed]
    [Google Scholar]
  25. Hicks M. G., de Leeuw E., Porcelli I., Buchanan G., Berks B. C., Palmer T. ( 2003). The Escherichia coli twin-arginine translocase: conserved residues of TatA and TatB family components involved in protein transport. FEBS Lett 539:61–67 [View Article][PubMed]
    [Google Scholar]
  26. Hitchcock A., Hall S. J., Myers J. D., Mulholland F., Jones M. A., Kelly D. J. ( 2010). Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni. Microbiology 156:2994–3010 [View Article][PubMed]
    [Google Scholar]
  27. Howlett R. M., Hughes B. M., Hitchcock A., Kelly D. J. ( 2012). Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent. Microbiology 158:1645–1655 [View Article][PubMed]
    [Google Scholar]
  28. Huang C.-H., Hu W.-C., Yang T.-C., Chang Y.-C. ( 2007). Zantedeschia mild mosaic virus, a new widespread virus in calla lily, detected by ELISA, dot-blot hybridization and IC-RT-PCR. Plant Pathol 56:183–189 [View Article]
    [Google Scholar]
  29. Jack R. L., Sargent F., Berks B. C., Sawers G., Palmer T. ( 2001). Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 183:1801–1804 [View Article][PubMed]
    [Google Scholar]
  30. Jack R. L., Buchanan G., Dubini A., Hatzixanthis K., Palmer T., Sargent F. ( 2004). Coordinating assembly and export of complex bacterial proteins. EMBO J 23:3962–3972 [View Article][PubMed]
    [Google Scholar]
  31. Jackson R. J., Elvers K. T., Lee L. J., Gidley M. D., Wainwright L. M., Lightfoot J., Park S. F., Poole R. K. ( 2007). Oxygen reactivity of both respiratory oxidases in Campylobacter jejuni: the cydAB genes encode a cyanide-resistant, low-affinity oxidase that is not of the cytochrome bd type. J Bacteriol 189:1604–1615 [View Article][PubMed]
    [Google Scholar]
  32. Jacobs-Reitsma W., Lyths U., Wagenaar J. ( 2008). Campylobacter in the food supply. Campylobacter, 3rd edn.627–644 Nachamkin I., Szymanski C. M., Blaser M. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Juhnke H. D., Hiltscher H., Nasiri H. R., Schwalbe H., Lancaster C. R. ( 2009). Production, characterization and determination of the real catalytic properties of the putative ‘succinate dehydrogenase’ from Wolinella succinogenes. Mol Microbiol 71:1088–1101 [View Article][PubMed]
    [Google Scholar]
  34. Kelly D. J. ( 2008). Complexity and versatility in the physiology and metabolism of Campylobacter jejuni. Campylobacter, 3rd edn.41–61 Nachamkin I., Szymanski C. M., Blaser M. J. Washington, DC: American Society for Microbiology; [View Article]
    [Google Scholar]
  35. Kendall J. J., Barrero-Tobon A. M., Hendrixson D. R., Kelly D. J. ( 2014). Hemerythrins in the microaerophilic bacterium Campylobacter jejuni help protect key iron–sulphur cluster enzymes from oxidative damage. Environ Microbiol 16:1105–1121 [View Article][PubMed]
    [Google Scholar]
  36. Koch S., Fritsch M. J., Buchanan G., Palmer T. ( 2012). Escherichia coli TatA and TatB proteins have N-out, C-in topology in intact cells. J Biol Chem 287:14420–14431 [View Article][PubMed]
    [Google Scholar]
  37. Lindenstrauss U., Matos C. F., Graubner W., Robinson C., Brüser T. ( 2010). Malfolded recombinant Tat substrates are Tat-independently degraded in Escherichia coli. FEBS Lett 584:3644–3648 [View Article][PubMed]
    [Google Scholar]
  38. Liu Y.-W., Denkmann K., Kosciow K., Dahl C., Kelly D. J. ( 2013). Tetrathionate stimulated growth of Campylobacter jejuni identifies a new type of bi-functional tetrathionate reductase (TsdA) that is widely distributed in bacteria. Mol Microbiol 88:173–188 [View Article][PubMed]
    [Google Scholar]
  39. Maillard J., Spronk C. A., Buchanan G., Lyall V., Richardson D. J., Palmer T., Vuister G. W., Sargent F. ( 2007). Structural diversity in twin-arginine signal peptide-binding proteins. Proc Natl Acad Sci U S A 104:15641–15646 [View Article][PubMed]
    [Google Scholar]
  40. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. ( 1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210 [View Article][PubMed]
    [Google Scholar]
  41. Maurer C., Panahandeh S., Jungkamp A. C., Moser M., Müller M. ( 2010). TatB functions as an oligomeric binding site for folded Tat precursor proteins. Mol Biol Cell 21:4151–4161 [View Article][PubMed]
    [Google Scholar]
  42. Myers J. D., Kelly D. J. ( 2005). A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiology 151:233–242 [View Article][PubMed]
    [Google Scholar]
  43. Oresnik I. J., Ladner C. L., Turner R. J. ( 2001). Identification of a twin-arginine leader-binding protein. Mol Microbiol 40:323–331 [View Article][PubMed]
    [Google Scholar]
  44. Pajaniappan M., Hall J. E., Cawthraw S. A., Newell D. G., Gaynor E. C., Fields J. A., Rathbun K. M., Agee W. A., Burns C. M. & other authors ( 2008). A temperature-regulated Campylobacter jejuni gluconate dehydrogenase is involved in respiration-dependent energy conservation and chicken colonization. Mol Microbiol 68:474–491 [View Article][PubMed]
    [Google Scholar]
  45. Patel R., Smith S. M., Robinson C. ( 2014). Protein transport by the bacterial Tat pathway. Biochim Biophys Acta 1843:1620–1628 [View Article][PubMed]
    [Google Scholar]
  46. Pittman M. S., Elvers K. T., Lee L., Jones M. A., Poole R. K., Park S. F., Kelly D. J. ( 2007). Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Mol Microbiol 63:575–590 [View Article][PubMed]
    [Google Scholar]
  47. Porcelli I., de Leeuw E., Wallis R., van den Brink-van der Laan E., de Kruijff B., Wallace B. A., Palmer T., Berks B. C. ( 2002). Characterization and membrane assembly of the TatA component of the Escherichia coli twin-arginine protein transport system. Biochemistry 41:13690–13697 [View Article][PubMed]
    [Google Scholar]
  48. Potter L. C., Cole J. A. ( 1999). Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem J 344:69–76 [View Article][PubMed]
    [Google Scholar]
  49. Rajashekara G., Drozd M., Gangaiah D., Jeon B., Liu Z., Zhang Q. ( 2009). Functional characterization of the twin-arginine translocation system in Campylobacter jejuni. Foodborne Pathog Dis 6:935–945 [View Article][PubMed]
    [Google Scholar]
  50. Rodrigue A., Chanal A., Beck K., Müller M., Wu L. F. ( 1999). Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J Biol Chem 274:13223–13228 [View Article][PubMed]
    [Google Scholar]
  51. Rodriguez F., Rouse S. L., Tait C. E., Harmer J., De Riso A., Timmel C. R., Sansom M. S. P., Berks B. C., Schnell J. R. ( 2013). Structural model for the protein-translocating element of the twin-arginine transport system. Proc Natl Acad Sci U S A 110:E1092–E1101 [View Article][PubMed]
    [Google Scholar]
  52. Rose R. W., Brüser T., Kissinger J. C., Pohlschröder M. ( 2002). Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45:943–950 [View Article][PubMed]
    [Google Scholar]
  53. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  54. Sargent F., Bogsch E. G., Stanley N. R., Wexler M., Robinson C., Berks B. C., Palmer T. ( 1998). Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17:3640–3650 [View Article][PubMed]
    [Google Scholar]
  55. Sargent F., Stanley N. R., Berks B. C., Palmer T. ( 1999). Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J Biol Chem 274:36073–36082 [View Article][PubMed]
    [Google Scholar]
  56. Sellars M. J., Hall S. J., Kelly D. J. ( 2002). Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol 184:4187–4196 [View Article][PubMed]
    [Google Scholar]
  57. Smart J. P., Cliff M. J., Kelly D. J. ( 2009). A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter. Mol Microbiol 74:742–757 [View Article][PubMed]
    [Google Scholar]
  58. Stahl M., Butcher J., Stintzi A. ( 2012). Nutrient acquisition and metabolism by Campylobacter jejuni. Front Cell Infect Microbiol 2:5 [View Article][PubMed]
    [Google Scholar]
  59. Stanley N. R., Findlay K., Berks B. C., Palmer T. ( 2001). Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope. J Bacteriol 183:139–144 [View Article][PubMed]
    [Google Scholar]
  60. Tarry M. J., Schäfer E., Chen S., Buchanan G., Greene N. P., Lea S. M., Palmer T., Saibil H. R., Berks B. C. ( 2009). Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system. Proc Natl Acad Sci U S A 106:13284–13289 [View Article][PubMed]
    [Google Scholar]
  61. Thomas M. T., Shepherd M., Poole R. K., van Vliet A. H. M., Kelly D. J., Pearson B. M. ( 2011). Two respiratory enzyme systems in Campylobacter jejuni NCTC 11168 contribute to growth on l-lactate. Environ Microbiol 13:48–61 [View Article][PubMed]
    [Google Scholar]
  62. Turner R. J., Papish A. L., Sargent F. ( 2004). Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol 50:225–238 [View Article][PubMed]
    [Google Scholar]
  63. van Mourik A., Bleumink-Pluym N. M., van Dijk L., van Putten J. P., Wösten M. M. ( 2008). Functional analysis of a Campylobacter jejuni alkaline phosphatase secreted via the Tat export machinery. Microbiology 154:584–592 [View Article][PubMed]
    [Google Scholar]
  64. van Vliet A. H. M., Wooldridge K. G., Ketley J. M. ( 1998). Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J Bacteriol 180:5291–5298[PubMed]
    [Google Scholar]
  65. Velayudhan J., Kelly D. J. ( 2002). Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148:685–694[PubMed]
    [Google Scholar]
  66. Wagenaar J. A., Jacobs-Reitsma W., Hofshagen M., Newell D. ( 2008). Poultry colonisation with Campylobacter and its control at the primary production level. Campylobacter, 3rd edn.667–678 Nachamkin I., Szymanski C. M., Blaser M. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  67. Weerakoon D. R., Borden N. J., Goodson C. M., Grimes J., Olson J. W. ( 2009). The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology. Microb Pathog 47:8–15 [View Article][PubMed]
    [Google Scholar]
  68. Weingarten R. A., Grimes J. L., Olson J. W. ( 2008). Role of Campylobacter jejuni respiratory oxidases and reductases in host colonization. Appl Environ Microbiol 74:1367–1375 [View Article][PubMed]
    [Google Scholar]
  69. Weingarten R. A., Taveirne M. E., Olson J. W. ( 2009). The dual-functioning fumarate reductase is the sole succinate:quinone reductase in Campylobacter jejuni and is required for full host colonization. J Bacteriol 191:5293–5300 [View Article][PubMed]
    [Google Scholar]
  70. Wexler M., Sargent F., Jack R. L., Stanley N. R., Bogsch E. G., Robinson C., Berks B. C., Palmer T. ( 2000). TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export. J Biol Chem 275:16717–16722 [View Article][PubMed]
    [Google Scholar]
  71. Wurch T., Lestienne F., Pauwels P. J. ( 1998). A modified overlap extension PCR method to create chimeric genes in the absence of restriction enzymes. Biotechnol Tech 12:653–657 [View Article]
    [Google Scholar]
  72. Yahr T. L., Wickner W. T. ( 2001). Functional reconstitution of bacterial Tat translocation in vitro. EMBO J 20:2472–2479 [View Article][PubMed]
    [Google Scholar]
  73. Zhang J. W., Butland G., Greenblatt J. F., Emili A., Zamble D. B. ( 2005). A role for SlyD in the Escherichia coli hydrogenase biosynthetic pathway. J Biol Chem 280:4360–4366 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080713-0
Loading
/content/journal/micro/10.1099/mic.0.080713-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed