1887

Abstract

When is grown in a medium lacking glucose or another preferred carbohydrate, the concentration of cAMP–cAMP receptor protein (cAMP–CRP) increases, and this latter complex regulates the expression of more than 180 genes. To respond rapidly to changes in carbohydrate availability, must maintain a suitable intracellular concentration of cAMP by either exporting or degrading excess cAMP. Currently, cAMP export via the TolC protein is thought to be more efficient at reducing these levels than is CpdA-mediated degradation of cAMP. Here, we compared the contributions of TolC and CpdA by measuring the expression of cAMP-regulated genes that encode tryptophanase (TnaA) and β-galactosidase. In the presence of exogenous cAMP, a mutant produced intermediate levels of these enzymes, suggesting that cAMP levels were held in check by CpdA. Conversely, a mutant produced much higher amounts of these enzymes, indicating that CpdA was more efficient than TolC at reducing cAMP levels. Surprisingly, expression of the gene halted rapidly when glucose was added to cells lacking both TolC and CpdA, even though under these conditions cAMP could not be removed by either pathway and expression should have remained high. This result suggests the existence of an additional mechanism that eliminates intracellular cAMP or terminates expression of some cAMP–CRP-regulated genes. In addition, adding glucose and other carbohydrates rapidly inhibited the function of pre-formed TnaA, indicating that TnaA is regulated by a previously unknown carbohydrate-dependent post-translational mechanism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080705-0
2014-09-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/2079.html?itemId=/content/journal/micro/10.1099/mic.0.080705-0&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. . Mol Syst Biol 2:, 0008. [CrossRef][PubMed]
    [Google Scholar]
  2. Bai G., Knapp G. S., McDonough K. A.. ( 2011;). Cyclic AMP signalling in mycobacteria: redirecting the conversation with a common currency. . Cell Microbiol 13:, 349–358. [CrossRef][PubMed]
    [Google Scholar]
  3. Bettenbrock K., Sauter T., Jahreis K., Kremling A., Lengeler J. W., Gilles E. D.. ( 2007;). Correlation between growth rates, EIIACrr phosphorylation, and intracellular cyclic AMP levels in Escherichia coli K-12. . J Bacteriol 189:, 6891–6900. [CrossRef][PubMed]
    [Google Scholar]
  4. Botsford J. L., DeMoss R. D.. ( 1971;). Catabolite repression of tryptophanase in Escherichia coli. . J Bacteriol 105:, 303–312.[PubMed]
    [Google Scholar]
  5. Coggan K. A., Wolfgang M. C.. ( 2012;). Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. . Curr Issues Mol Biol 14:, 47–70.[PubMed]
    [Google Scholar]
  6. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. . Proc Natl Acad Sci U S A 97:, 6640–6645. [CrossRef][PubMed]
    [Google Scholar]
  7. Deutscher J., Francke C., Postma P. W.. ( 2006;). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. . Microbiol Mol Biol Rev 70:, 939–1031. [CrossRef][PubMed]
    [Google Scholar]
  8. Dittrich C. R., Bennett G. N., San K. Y.. ( 2005;). Characterization of the acetate-producing pathways in Escherichia coli. . Biotechnol Prog 21:, 1062–1067. [CrossRef][PubMed]
    [Google Scholar]
  9. Dykxhoorn D. M., St. Pierre R., Linn T.. ( 1996;). A set of compatible tac promoter expression vectors. . Gene 177:, 133–136. [CrossRef][PubMed]
    [Google Scholar]
  10. Escalante A., Salinas Cervantes A., Gosset G., Bolívar F.. ( 2012;). Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. . Appl Microbiol Biotechnol 94:, 1483–1494. [CrossRef][PubMed]
    [Google Scholar]
  11. Goldenbaum P. E., Hall G. A.. ( 1979;). Transport of cyclic adenosine 3′,5′-monophosphate across Escherichia coli vesicle membranes. . J Bacteriol 140:, 459–467.[PubMed]
    [Google Scholar]
  12. Griffith K. L., Wolf R. E. Jr. ( 2002;). Measuring β-galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. . Biochem Biophys Res Commun 290:, 397–402. [CrossRef][PubMed]
    [Google Scholar]
  13. Gutierrez-Ríos R. M., Freyre-Gonzalez J. A., Resendis O., Collado-Vides J., Saier M., Gosset G.. ( 2007;). Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. . BMC Microbiol 7:, 53. [CrossRef][PubMed]
    [Google Scholar]
  14. Hantke K., Winkler K., Schultz J. E.. ( 2011;). Escherichia coli exports cyclic AMP via TolC. . J Bacteriol 193:, 1086–1089. [CrossRef][PubMed]
    [Google Scholar]
  15. Högberg-Raibaud A., Raibaud O., Goldberg M. E.. ( 1975;). Kinetic and equilibrium studies on the activation of Escherichia coli K12 tryptophanase by pyridoxal 5′-phosphate and monovalent cations. . J Biol Chem 250:, 3352–3358.[PubMed]
    [Google Scholar]
  16. Imamura R., Yamanaka K., Ogura T., Hiraga S., Fujita N., Ishihama A., Niki H.. ( 1996;). Identification of the cpdA gene encoding cyclic 3′,5′-adenosine monophosphate phosphodiesterase in Escherichia coli. . J Biol Chem 271:, 25423–25429. [CrossRef][PubMed]
    [Google Scholar]
  17. Isaacs H. Jr, Chao D., Yanofsky C., Saier M. H. Jr. ( 1994;). Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli. . Microbiology 140:, 2125–2134. [CrossRef][PubMed]
    [Google Scholar]
  18. Ishihama Y., Schmidt T., Rappsilber J., Mann M., Hartl F. U., Kerner M. J., Frishman D.. ( 2008;). Protein abundance profiling of the Escherichia coli cytosol. . BMC Genomics 9:, 102. [CrossRef][PubMed]
    [Google Scholar]
  19. Lee C. R., Cho S. H., Yoon M. J., Peterkofsky A., Seok Y. J.. ( 2007;). Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA. . Proc Natl Acad Sci U S A 104:, 4124–4129. [CrossRef][PubMed]
    [Google Scholar]
  20. Lee C. R., Cho S. H., Kim H. J., Kim M., Peterkofsky A., Seok Y. J.. ( 2010;). Potassium mediates Escherichia coli enzyme IIANtr-dependent regulation of sigma factor selectivity. . Mol Microbiol 78:, 1468–1483. [CrossRef][PubMed]
    [Google Scholar]
  21. Li G., Young K. D.. ( 2012;). Isolation and identification of new inner membrane-associated proteins that localize to cell poles in Escherichia coli. . Mol Microbiol 84:, 276–295. [CrossRef][PubMed]
    [Google Scholar]
  22. Li G., Young K. D.. ( 2013;). Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan. . Microbiology 159:, 402–410. [CrossRef][PubMed]
    [Google Scholar]
  23. McDonough K. A., Rodriguez A.. ( 2012;). The myriad roles of cyclic AMP in microbial pathogens: from signal to sword. . Nat Rev Microbiol 10:, 27–38.[PubMed]
    [Google Scholar]
  24. Pflüger-Grau K., Görke B.. ( 2010;). Regulatory roles of the bacterial nitrogen-related phosphotransferase system. . Trends Microbiol 18:, 205–214. [CrossRef][PubMed]
    [Google Scholar]
  25. Reddy P., Kamireddi M.. ( 1998;). Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system. . J Bacteriol 180:, 732–736.[PubMed]
    [Google Scholar]
  26. Reddy P., Meadow N., Roseman S., Peterkofsky A.. ( 1985;). Reconstitution of regulatory properties of adenylate cyclase in Escherichia coli extracts. . Proc Natl Acad Sci U S A 82:, 8300–8304. [CrossRef][PubMed]
    [Google Scholar]
  27. Shah S., Peterkofsky A.. ( 1991;). Characterization and generation of Escherichia coli adenylate cyclase deletion mutants. . J Bacteriol 173:, 3238–3242.[PubMed]
    [Google Scholar]
  28. Slonczewski J. L., Rosen B. P., Alger J. R., Macnab R. M.. ( 1981;). pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. . Proc Natl Acad Sci U S A 78:, 6271–6275. [CrossRef][PubMed]
    [Google Scholar]
  29. Tchieu J. H., Norris V., Edwards J. S., Saier M. H. Jr. ( 2001;). The complete phosphotransferase system in Escherichia coli. . J Mol Microbiol Biotechnol 3:, 329–346.[PubMed]
    [Google Scholar]
  30. Yang J. K., Epstein W.. ( 1983;). Purification and characterization of adenylate cyclase from Escherichia coli K12. . J Biol Chem 258:, 3750–3758.[PubMed]
    [Google Scholar]
  31. Zheng D., Constantinidou C., Hobman J. L., Minchin S. D.. ( 2004;). Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. . Nucleic Acids Res 32:, 5874–5893. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080705-0
Loading
/content/journal/micro/10.1099/mic.0.080705-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error