1887

Abstract

is a thermally dimorphic fungus and a highly significant pathogen of immunocompromised individuals living in or having travelled in south-east Asia. At 25 °C, grows filamentously. Under the appropriate conditions, these filaments (hyphae) produce conidiophores bearing chains of conidia. Yet, when incubated at 37 °C, or upon infecting host tissue, grows as a yeast that divides by binary fission. Previously, an -mediated transformation system was used to randomly mutagenize , resulting in the isolation of a mutant defective in normal patterns of morphogenesis and conidiogenesis. The interrupted gene was identified as . In the current study, we demonstrate that the mutant produced fewer conidia at 25 °C than the wild-type and a complemented strain. In addition, disruption of the gene resulted in early conidial germination and perturbation of cell wall integrity. The mutant exhibited abnormal chitin distribution while growing at 25 °C, but not at 37 °C. Interestingly, at both temperatures, the mutant possessed increased chitin content, which was accompanied by amplified transcription of two chitin synthase genes, and . Moreover, the expression of was induced during post-exponential-phase growth as well as by heat shock. Thus, is required for normal patterns of development, cell wall integrity, chitin deposition, appropriate expression and heat stress response in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080689-0
2014-09-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1929.html?itemId=/content/journal/micro/10.1099/mic.0.080689-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  3. Andrianopoulos A.. ( 2002;). Control of morphogenesis in the human fungal pathogen Penicillium marneffei. . Int J Med Microbiol 292:, 331–347. [CrossRef][PubMed]
    [Google Scholar]
  4. Aranda S., Laguna A., de la Luna S.. ( 2011;). DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. . FASEB J 25:, 449–462. [CrossRef][PubMed]
    [Google Scholar]
  5. Boas N. F.. ( 1953;). Method for the determination of hexosamines in tissues. . J Biol Chem 204:, 553–563.[PubMed]
    [Google Scholar]
  6. Borgia P. T., Iartchouk N., Riggle P. J., Winter K. R., Koltin Y., Bulawa C. E.. ( 1996;). The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. . Fungal Genet Biol 20:, 193–203. [CrossRef][PubMed]
    [Google Scholar]
  7. Borneman A. R., Hynes M. J., Andrianopoulos A.. ( 2000;). The abaA homologue of Penicillium marneffei participates in two developmental programs: conidiation and dimorphic growth. . Mol Microbiol 38:, 1038–1047.
    [Google Scholar]
  8. Borneman A. R., Hynes M. J., Andrianopoulos A.. ( 2001;). An STE12 homolog from the asexual, dimorphic fungus Penicillium marneffei complements the defect in sexual development of an Aspergillus nidulans steA mutant. . Genetics 157:, 1003–1014.[PubMed]
    [Google Scholar]
  9. Boyce K. J., Andrianopoulos A.. ( 2007;). A p21-activated kinase is required for conidial germination in Penicillium marneffei. . PLoS Pathog 3:, e162. [CrossRef][PubMed]
    [Google Scholar]
  10. Boyce K. J., Andrianopoulos A.. ( 2013;). Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei. . Eukaryot Cell 12:, 154–160. [CrossRef][PubMed]
    [Google Scholar]
  11. Boyce K. J., Schreider L., Andrianopoulos A.. ( 2009;). In vivo yeast cell morphogenesis is regulated by a p21-activated kinase in the human pathogen Penicillium marneffei. . PLoS Pathog 5:, e1000678. [CrossRef][PubMed]
    [Google Scholar]
  12. Bulik D. A., Olczak M., Lucero H. A., Osmond B. C., Robbins P. W., Specht C. A.. ( 2003;). Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. . Eukaryot Cell 2:, 886–900. [CrossRef][PubMed]
    [Google Scholar]
  13. Cooper C. R., Vanittanakom N.. ( 2008;). Insights into the pathogenicity of Penicillium marneffei. . Future Microbiol 3:, 43–55. [CrossRef][PubMed]
    [Google Scholar]
  14. Cotter G., Doyle S., Kavanagh K.. ( 2000;). Development of an insect model for the in vivo pathogenicity testing of yeasts. . FEMS Immunol Med Microbiol 27:, 163–169. [CrossRef][PubMed]
    [Google Scholar]
  15. Garrett S., Broach J.. ( 1989;). Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. . Genes Dev 3:, 1336–1348. [CrossRef][PubMed]
    [Google Scholar]
  16. Garrett S., Menold M. M., Broach J. R.. ( 1991;). The Saccharomyces cerevisiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. . Mol Cell Biol 11:, 4045–4052.[PubMed]
    [Google Scholar]
  17. Gifford T. D., Cooper C. R. Jr. ( 2009;). Karyotype determination and gene mapping in two clinical isolates of Penicillium marneffei. . Med Mycol 47:, 286–295. [CrossRef][PubMed]
    [Google Scholar]
  18. Goyard S., Knechtle P., Chauvel M., Mallet A., Prévost M. C., Proux C., Coppée J. Y., Schwarz P., Dromer F.. & other authors ( 2008;). The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. . Mol Biol Cell 19:, 2251–2266. [CrossRef][PubMed]
    [Google Scholar]
  19. Guest G. M., Lin X., Momany M.. ( 2004;). Aspergillus nidulans RhoA is involved in polar growth, branching, and cell wall synthesis. . Fungal Genet Biol 41:, 13–22. [CrossRef][PubMed]
    [Google Scholar]
  20. Harris J. L.. ( 1986;). Modified method for fungal slide culture. . J Clin Microbiol 24:, 460–461.[PubMed]
    [Google Scholar]
  21. Hartley A. D., Ward M. P., Garrett S.. ( 1994;). The Yak1 protein kinase of Saccharomyces cerevisiae moderates thermotolerance and inhibits growth by an Sch9 protein kinase-independent mechanism. . Genetics 136:, 465–474.[PubMed]
    [Google Scholar]
  22. Hill T. W., Loprete D. M., Momany M., Ha Y., Harsch L. M., Livesay J. A., Mirchandani A., Murdock J. J., Vaughan M. J., Watt M. B.. ( 2006;). Isolation of cell wall mutants in Aspergillus nidulans by screening for hypersensitivity to Calcofluor White. . Mycologia 98:, 399–409. [CrossRef][PubMed]
    [Google Scholar]
  23. Kassis S., Melhuish T., Annan R. S., Chen S. L., Lee J. C., Livi G. P., Creasy C. L.. ( 2000;). Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue. . Biochem J 348:, 263–272. [CrossRef][PubMed]
    [Google Scholar]
  24. Kavanagh K., Fallon J. P.. ( 2010;). Galleria mellonella larvae as models for studying fungal virulence. . Fungal Biol Rev 24:, 79–83. [CrossRef]
    [Google Scholar]
  25. Kopecká M., Gabriel M.. ( 1992;). The influence of congo red on the cell wall and (1→3)-β-d-glucan microfibril biogenesis in Saccharomyces cerevisiae. . Arch Microbiol 158:, 115–126. [CrossRef][PubMed]
    [Google Scholar]
  26. Kummasook A., Cooper C. R. Jr, Vanittanakom N.. ( 2010;). An improved Agrobacterium-mediated transformation system for the functional genetic analysis of Penicillium marneffei. . Med Mycol 48:, 1066–1074. [CrossRef][PubMed]
    [Google Scholar]
  27. Kummasook A., Cooper C. R. Jr, Sakamoto A., Terui Y., Kashiwagi K., Vanittanakom N.. ( 2013;). Spermidine is required for morphogenesis in the human pathogenic fungus, Penicillium marneffei. . Fungal Genet Biol 58-59:, 25–32. [CrossRef][PubMed]
    [Google Scholar]
  28. Lee J. I., Choi J. H., Park B. C., Park Y. H., Lee M. Y., Park H. M., Maeng P. J.. ( 2004;). Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factors. . Fungal Genet Biol 41:, 635–646. [CrossRef][PubMed]
    [Google Scholar]
  29. Lee P., Cho B. R., Joo H. S., Hahn J. S.. ( 2008;). Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4. . Mol Microbiol 70:, 882–895.[PubMed]
    [Google Scholar]
  30. Maubon D., Park S., Tanguy M., Huerre M., Schmitt C., Prévost M. C., Perlin D. S., Latgé J. P., Beauvais A.. ( 2006;). AGS3, an α(1–3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. . Fungal Genet Biol 43:, 366–375. [CrossRef][PubMed]
    [Google Scholar]
  31. Moriya H., Shimizu-Yoshida Y., Omori A., Iwashita S., Katoh M., Sakai A.. ( 2001;). Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. . Genes Dev 15:, 1217–1228. [CrossRef][PubMed]
    [Google Scholar]
  32. Punt P. J., Oliver R. P., Dingemanse M. A., Pouwels P. H., van den Hondel C. A.. ( 1987;). Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. . Gene 56:, 117–124. [CrossRef][PubMed]
    [Google Scholar]
  33. Riley S. P., Woodman M. E., Stevenson B.. ( 2008;). Culture of Escherichia coli and related bacteria. . In Current Protocols: Essential Laboratory Techniques, pp. 4.2.11–4.2.14. Edited by Gallagher S. R., Wiley E. A... Hoboken, NJ:: John Wiley & Sons;, Inc.
    [Google Scholar]
  34. Romano J., Nimrod G., Ben-Tal N., Shadkchan Y., Baruch K., Sharon H., Osherov N.. ( 2006;). Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence. . Microbiology 152:, 1919–1928. [CrossRef][PubMed]
    [Google Scholar]
  35. Sambrook J., Russell D. W.. ( 2001;). Preparation of plasmid DNA by alkaline lysis with SDS: minipreparation. . In Molecular Cloning: A Laboratory Manual, pp. 1.32–1.34. Edited by Sambrook J., Russell D. W... Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  36. Vanittanakom N., Cooper C. R. Jr, Fisher M. C., Sirisanthana T.. ( 2006;). Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. . Clin Microbiol Rev 19:, 95–110. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080689-0
Loading
/content/journal/micro/10.1099/mic.0.080689-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error