1887

Abstract

is a thermally dimorphic fungus and a highly significant pathogen of immunocompromised individuals living in or having travelled in south-east Asia. At 25 °C, grows filamentously. Under the appropriate conditions, these filaments (hyphae) produce conidiophores bearing chains of conidia. Yet, when incubated at 37 °C, or upon infecting host tissue, grows as a yeast that divides by binary fission. Previously, an -mediated transformation system was used to randomly mutagenize , resulting in the isolation of a mutant defective in normal patterns of morphogenesis and conidiogenesis. The interrupted gene was identified as . In the current study, we demonstrate that the mutant produced fewer conidia at 25 °C than the wild-type and a complemented strain. In addition, disruption of the gene resulted in early conidial germination and perturbation of cell wall integrity. The mutant exhibited abnormal chitin distribution while growing at 25 °C, but not at 37 °C. Interestingly, at both temperatures, the mutant possessed increased chitin content, which was accompanied by amplified transcription of two chitin synthase genes, and . Moreover, the expression of was induced during post-exponential-phase growth as well as by heat shock. Thus, is required for normal patterns of development, cell wall integrity, chitin deposition, appropriate expression and heat stress response in .

Funding
This study was supported by the:
  • Thai Ministry of Education
  • Faculty of Medicine, Chiang Mai University
  • Youngstown State University
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080689-0
2014-09-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1929.html?itemId=/content/journal/micro/10.1099/mic.0.080689-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Andrianopoulos A. ( 2002). Control of morphogenesis in the human fungal pathogen Penicillium marneffei. Int J Med Microbiol 292:331–347 [View Article][PubMed]
    [Google Scholar]
  4. Aranda S., Laguna A., de la Luna S. ( 2011). DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 25:449–462 [View Article][PubMed]
    [Google Scholar]
  5. Boas N. F. ( 1953). Method for the determination of hexosamines in tissues. J Biol Chem 204:553–563[PubMed]
    [Google Scholar]
  6. Borgia P. T., Iartchouk N., Riggle P. J., Winter K. R., Koltin Y., Bulawa C. E. ( 1996). The chsB gene of Aspergillus nidulans is necessary for normal hyphal growth and development. Fungal Genet Biol 20:193–203 [View Article][PubMed]
    [Google Scholar]
  7. Borneman A. R., Hynes M. J., Andrianopoulos A. ( 2000). The abaA homologue of Penicillium marneffei participates in two developmental programs: conidiation and dimorphic growth. Mol Microbiol 38:1038–1047
    [Google Scholar]
  8. Borneman A. R., Hynes M. J., Andrianopoulos A. ( 2001). An STE12 homolog from the asexual, dimorphic fungus Penicillium marneffei complements the defect in sexual development of an Aspergillus nidulans steA mutant. Genetics 157:1003–1014[PubMed]
    [Google Scholar]
  9. Boyce K. J., Andrianopoulos A. ( 2007). A p21-activated kinase is required for conidial germination in Penicillium marneffei. PLoS Pathog 3:e162 [View Article][PubMed]
    [Google Scholar]
  10. Boyce K. J., Andrianopoulos A. ( 2013). Morphogenetic circuitry regulating growth and development in the dimorphic pathogen Penicillium marneffei. Eukaryot Cell 12:154–160 [View Article][PubMed]
    [Google Scholar]
  11. Boyce K. J., Schreider L., Andrianopoulos A. ( 2009). In vivo yeast cell morphogenesis is regulated by a p21-activated kinase in the human pathogen Penicillium marneffei. PLoS Pathog 5:e1000678 [View Article][PubMed]
    [Google Scholar]
  12. Bulik D. A., Olczak M., Lucero H. A., Osmond B. C., Robbins P. W., Specht C. A. ( 2003). Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot Cell 2:886–900 [View Article][PubMed]
    [Google Scholar]
  13. Cooper C. R., Vanittanakom N. ( 2008). Insights into the pathogenicity of Penicillium marneffei. Future Microbiol 3:43–55 [View Article][PubMed]
    [Google Scholar]
  14. Cotter G., Doyle S., Kavanagh K. ( 2000). Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 27:163–169 [View Article][PubMed]
    [Google Scholar]
  15. Garrett S., Broach J. ( 1989). Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev 3:1336–1348 [View Article][PubMed]
    [Google Scholar]
  16. Garrett S., Menold M. M., Broach J. R. ( 1991). The Saccharomyces cerevisiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Mol Cell Biol 11:4045–4052[PubMed]
    [Google Scholar]
  17. Gifford T. D., Cooper C. R. Jr ( 2009). Karyotype determination and gene mapping in two clinical isolates of Penicillium marneffei. Med Mycol 47:286–295 [View Article][PubMed]
    [Google Scholar]
  18. Goyard S., Knechtle P., Chauvel M., Mallet A., Prévost M. C., Proux C., Coppée J. Y., Schwarz P., Dromer F. & other authors ( 2008). The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol Biol Cell 19:2251–2266 [View Article][PubMed]
    [Google Scholar]
  19. Guest G. M., Lin X., Momany M. ( 2004). Aspergillus nidulans RhoA is involved in polar growth, branching, and cell wall synthesis. Fungal Genet Biol 41:13–22 [View Article][PubMed]
    [Google Scholar]
  20. Harris J. L. ( 1986). Modified method for fungal slide culture. J Clin Microbiol 24:460–461[PubMed]
    [Google Scholar]
  21. Hartley A. D., Ward M. P., Garrett S. ( 1994). The Yak1 protein kinase of Saccharomyces cerevisiae moderates thermotolerance and inhibits growth by an Sch9 protein kinase-independent mechanism. Genetics 136:465–474[PubMed]
    [Google Scholar]
  22. Hill T. W., Loprete D. M., Momany M., Ha Y., Harsch L. M., Livesay J. A., Mirchandani A., Murdock J. J., Vaughan M. J., Watt M. B. ( 2006). Isolation of cell wall mutants in Aspergillus nidulans by screening for hypersensitivity to Calcofluor White. Mycologia 98:399–409 [View Article][PubMed]
    [Google Scholar]
  23. Kassis S., Melhuish T., Annan R. S., Chen S. L., Lee J. C., Livi G. P., Creasy C. L. ( 2000). Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue. Biochem J 348:263–272 [View Article][PubMed]
    [Google Scholar]
  24. Kavanagh K., Fallon J. P. ( 2010). Galleria mellonella larvae as models for studying fungal virulence. Fungal Biol Rev 24:79–83 [View Article]
    [Google Scholar]
  25. Kopecká M., Gabriel M. ( 1992). The influence of congo red on the cell wall and (1→3)-β-d-glucan microfibril biogenesis in Saccharomyces cerevisiae. Arch Microbiol 158:115–126 [View Article][PubMed]
    [Google Scholar]
  26. Kummasook A., Cooper C. R. Jr, Vanittanakom N. ( 2010). An improved Agrobacterium-mediated transformation system for the functional genetic analysis of Penicillium marneffei. Med Mycol 48:1066–1074 [View Article][PubMed]
    [Google Scholar]
  27. Kummasook A., Cooper C. R. Jr, Sakamoto A., Terui Y., Kashiwagi K., Vanittanakom N. ( 2013). Spermidine is required for morphogenesis in the human pathogenic fungus, Penicillium marneffei. Fungal Genet Biol 58-59:25–32 [View Article][PubMed]
    [Google Scholar]
  28. Lee J. I., Choi J. H., Park B. C., Park Y. H., Lee M. Y., Park H. M., Maeng P. J. ( 2004). Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factors. Fungal Genet Biol 41:635–646 [View Article][PubMed]
    [Google Scholar]
  29. Lee P., Cho B. R., Joo H. S., Hahn J. S. ( 2008). Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4. Mol Microbiol 70:882–895[PubMed]
    [Google Scholar]
  30. Maubon D., Park S., Tanguy M., Huerre M., Schmitt C., Prévost M. C., Perlin D. S., Latgé J. P., Beauvais A. ( 2006). AGS3, an α(1–3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. Fungal Genet Biol 43:366–375 [View Article][PubMed]
    [Google Scholar]
  31. Moriya H., Shimizu-Yoshida Y., Omori A., Iwashita S., Katoh M., Sakai A. ( 2001). Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal. Genes Dev 15:1217–1228 [View Article][PubMed]
    [Google Scholar]
  32. Punt P. J., Oliver R. P., Dingemanse M. A., Pouwels P. H., van den Hondel C. A. ( 1987). Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124 [View Article][PubMed]
    [Google Scholar]
  33. Riley S. P., Woodman M. E., Stevenson B. ( 2008) Culture of Escherichia coli and related bacteria. Current Protocols: Essential Laboratory Techniques4.2.11–4.2.14 Gallagher S. R., Wiley E. A. Hoboken, NJ: John Wiley & Sons;
    [Google Scholar]
  34. Romano J., Nimrod G., Ben-Tal N., Shadkchan Y., Baruch K., Sharon H., Osherov N. ( 2006). Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence. Microbiology 152:1919–1928 [View Article][PubMed]
    [Google Scholar]
  35. Sambrook J., Russell D. W. ( 2001). Preparation of plasmid DNA by alkaline lysis with SDS: minipreparation. Molecular Cloning: A Laboratory Manual1.32–1.34 Sambrook J., Russell D. W. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  36. Vanittanakom N., Cooper C. R. Jr, Fisher M. C., Sirisanthana T. ( 2006). Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin Microbiol Rev 19:95–110 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080689-0
Loading
/content/journal/micro/10.1099/mic.0.080689-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error