1887

Abstract

Mg has been shown to be an important signal controlling gene regulation via the PhoPQ two-component regulatory system for a range of Gram-negative bacteria, including and . The magnesium ion transporter MgtB is part of the complex PhoPQ regulon, being upregulated in response to low Mg. Despite the presence of other Mg transport systems in , inactivation of had a significant effect on the ability of the bacteria to scavenge this crucial ion. Whereas inactivation of PhoPQ is reported to adversely affect intracellular survival, we show that and Δ mutants survived equally as well as the respective parent strain within macrophages, although they were more sensitive to killing in the model of infection. Surprisingly, despite MgtB being only one member of the Mg stimulon and PhoPQ controlling the expression levels of a range of genes including , the Δ mutants were more highly attenuated than the equivalent Δ mutants in mouse models of infection. MgtB may be a suitable target for development of novel antimicrobials, and investigation of its role may help elucidate the contribution of this component of the PhoPQ regulon to pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080556-0
2014-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2710.html?itemId=/content/journal/micro/10.1099/mic.0.080556-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Zurth K., Morelli G., Torrea G., Guiyoule A., Carniel E.. ( 1999;). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. . Proc Natl Acad Sci U S A 96:, 14043–14048. [CrossRef][PubMed]
    [Google Scholar]
  2. Bozue J., Mou S., Moody K. L., Cote C. K., Trevino S., Fritz D., Worsham P.. ( 2011;). The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis. . Microb Pathog 50:, 314–321. [CrossRef][PubMed]
    [Google Scholar]
  3. Chain P. S. G., Carniel E., Larimer F. W., Lamerdin J., Stoutland P. O., Regala W. M., Georgescu A. M., Vergez L. M., Land M. L.. & other authors ( 2004;). Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. . Proc Natl Acad Sci U S A 101:, 13826–13831. [CrossRef][PubMed]
    [Google Scholar]
  4. Chamnongpol S., Groisman E. A.. ( 2002;). Mg2+ homeostasis and avoidance of metal toxicity. . Mol Microbiol 44:, 561–571. [CrossRef][PubMed]
    [Google Scholar]
  5. Champion O. L., Cooper I. A. M., James S. L., Ford D., Karlyshev A., Wren B. W., Duffield M., Oyston P. C. F., Titball R. W.. ( 2009;). Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis.. Microbiology 155:, 1516–1522. [CrossRef][PubMed]
    [Google Scholar]
  6. Chauvaux S., Rosso M. L., Frangeul L., Lacroix C., Labarre L., Schiavo A., Marceau M., Dillies M. A., Foulon J.. & other authors ( 2007;). Transcriptome analysis of Yersinia pestis in human plasma: an approach for discovering bacterial genes involved in septicaemic plague. . Microbiology 153:, 3112–3124. [CrossRef][PubMed]
    [Google Scholar]
  7. Dennis D. T., Gage K. L., Grantz N., Poland J. D., Tikhomirov E.. ( 1999;). Plague Manual: Epidemiology, Distribution, Surveillance and Control. Geneva:: World Health Organization;.
    [Google Scholar]
  8. Erickson D. L., Russell C. W., Johnson K. L., Hileman T., Stewart R. M.. ( 2011;). PhoP and OxyR transcriptional regulators contribute to Yersinia pestis virulence and survival within Galleria mellonella. . Microb Pathog 51:, 389–395. [CrossRef][PubMed]
    [Google Scholar]
  9. Fetherston J. D., Mier I. Jr, Truszczynska H., Perry R. D.. ( 2012;). The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague. . Infect Immun 80:, 3880–3891. [CrossRef][PubMed]
    [Google Scholar]
  10. Freter R., Allweiss B., O’Brien P. C., Halstead S. A., Macsai M. S.. ( 1981;). Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vitro studies. . Infect Immun 34:, 241–249.[PubMed]
    [Google Scholar]
  11. Garcia-del Portillo F., Foster J. W., Maguire M. E., Finlay B. B.. ( 1992;). Characterization of the micro-environment of Salmonella typhimurium-containing vacuoles within MDCK epithelial cells. . Mol Microbiol 6:, 3289–3297. [CrossRef][PubMed]
    [Google Scholar]
  12. García Véscovi E., Soncini F. C., Groisman E. A.. ( 1996;). Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. . Cell 84:, 165–174. [CrossRef][PubMed]
    [Google Scholar]
  13. Grabenstein J. P., Marceau M., Pujol C., Simonet M., Bliska J. B.. ( 2004;). The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence. . Infect Immun 72:, 4973–4984. [CrossRef][PubMed]
    [Google Scholar]
  14. Grabenstein J. P., Fukuto H. S., Palmer L. E., Bliska J. B.. ( 2006;). Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. . Infect Immun 74:, 3727–3741. [CrossRef][PubMed]
    [Google Scholar]
  15. Guzman L. M., Belin D., Carson M. J., Beckwith J.. ( 1995;). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. . J Bacteriol 177:, 4121–4130.[PubMed]
    [Google Scholar]
  16. Inglesby T. V., Dennis D. T., Henderson D. A., Bartlett J. G., Ascher M. S., Eitzen E., Fine A. D., Friedlander A. M., Hauer J.. & other authors ( 2000;). Plague as a biological weapon: medical and public health management. . JAMA 283:, 2281–2290. [CrossRef][PubMed]
    [Google Scholar]
  17. Klein K. A., Fukuto H. S., Pelletier M., Romanov G., Grabenstein J. P., Palmer L. E., Ernst R., Bliska J. B.. ( 2012;). A transposon site hybridization screen identifies galU and wecBC as important for survival of Yersinia pestis in murine macrophages. . J Bacteriol 194:, 653–662. [CrossRef][PubMed]
    [Google Scholar]
  18. Li Y. L., Gao H., Qin L., Li B., Han Y. P., Guo Z. B., Song Y. J., Zhai J. H., Du Z. M.. & other authors ( 2008;). Identification and characterization of PhoP regulon members in Yersinia pestis biovar Microtus. . BMC Genomics 9:, 143. [CrossRef][PubMed]
    [Google Scholar]
  19. Maxson M. E., Darwin A. J.. ( 2004;). Identification of inducers of the Yersinia enterocolitica phage shock protein system and comparison to the regulation of the RpoE and Cpx extracytoplasmic stress responses. . J Bacteriol 186:, 4199–4208. [CrossRef][PubMed]
    [Google Scholar]
  20. Moncrief M. B. C., Maguire M. E.. ( 1999;). Magnesium transport in prokaryotes. . J Biol Inorg Chem 4:, 523–527. [CrossRef][PubMed]
    [Google Scholar]
  21. Oyston P. C. F., Dorrell N., Williams K., Li S. R., Green M., Titball R. W., Wren B. W.. ( 2000;). The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. . Infect Immun 68:, 3419–3425. [CrossRef][PubMed]
    [Google Scholar]
  22. Papp-Wallace K. M., Maguire M. E.. ( 2008;). Regulation of CorA Mg2+ channel function affects the virulence of Salmonella enterica serovar Typhimurium. . J Bacteriol 190:, 6509–6516. [CrossRef][PubMed]
    [Google Scholar]
  23. Parkhill J., Wren B. W., Thomson N. R., Titball R. W., Holden M. T. G., Prentice M. B., Sebaihia M., James K. D., Churcher C.. & other authors ( 2001;). Genome sequence of Yersinia pestis, the causative agent of plague. . Nature 413:, 523–527. [CrossRef][PubMed]
    [Google Scholar]
  24. Perez J. C., Shin D., Zwir I., Latifi T., Hadley T. J., Groisman E. A.. ( 2009;). Evolution of a bacterial regulon controlling virulence and Mg2+ homeostasis. . PLoS Genet 5:, e1000428. [CrossRef][PubMed]
    [Google Scholar]
  25. Perry R. D., Fetherston J. D.. ( 1997;). Yersinia pestis–etiologic agent of plague. . Clin Microbiol Rev 10:, 35–66.[PubMed]
    [Google Scholar]
  26. Perry R. D., Craig S. K., Abney J., Bobrov A. G., Kirillina O., Mier I. Jr, Truszczynska H., Fetherston J. D.. ( 2012;). Manganese transporters Yfe and MntH are Fur-regulated and important for the virulence of Yersinia pestis. . Microbiology 158:, 804–815. [CrossRef][PubMed]
    [Google Scholar]
  27. Pollack C., Straley S. C., Klempner M. S.. ( 1986;). Probing the phagolysosomal environment of human macrophages with a Ca2+-responsive operon fusion in Yersinia pestis. . Nature 322:, 834–836. [CrossRef][PubMed]
    [Google Scholar]
  28. Rebeil R., Jarrett C. O., Driver J. D., Ernst R. K., Oyston P. C. F., Hinnebusch B. J.. ( 2013;). Induction of the Yersinia pestis PhoP–PhoQ regulatory system in the flea and its role in producing a transmissible infection. . J Bacteriol 195:, 1920–1930. [CrossRef][PubMed]
    [Google Scholar]
  29. Reed L. J., Muench H.. ( 1938;). A simple method for estimating fifty percent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  30. Rosso M. L., Chauvaux S., Dessein R., Laurans C., Frangeul L., Lacroix C., Schiavo A., Dillies M. A., Foulon J.. & other authors ( 2008;). Growth of Yersinia pseudotuberculosis in human plasma: impacts on virulence and metabolic gene expression. . BMC Microbiol 8:, 211. [CrossRef][PubMed]
    [Google Scholar]
  31. Russell P., Eley S. M., Hibbs S. E., Manchee R. J., Stagg A. J., Titball R. W.. ( 1995;). A comparison of Plague vaccine, USP and EV76 vaccine induced protection against Yersinia pestis in a murine model. . Vaccine 13:, 1551–1556. [CrossRef][PubMed]
    [Google Scholar]
  32. Simonet M., Richard S., Berche P.. ( 1990;). Electron microscopic evidence for in vivo extracellular localization of Yersinia pseudotuberculosis harboring the pYV plasmid. . Infect Immun 58:, 841–845.[PubMed]
    [Google Scholar]
  33. Smith R. L., Maguire M. E.. ( 1998;). Microbial magnesium transport: unusual transporters searching for identity. . Mol Microbiol 28:, 217–226. [CrossRef][PubMed]
    [Google Scholar]
  34. Snavely M. D., Florer J. B., Miller C. G., Maguire M. E.. ( 1989;). Magnesium transport in Salmonella typhimurium: 28Mg2+ transport by the CorA, MgtA, and MgtB systems. . J Bacteriol 171:, 4761–4766.[PubMed]
    [Google Scholar]
  35. Snavely M. D., Gravina S. A., Cheung T. T., Miller C. G., Maguire M. E.. ( 1991;). Magnesium transport in Salmonella typhimurium. Regulation of mgtA and mgtB expression. . J Biol Chem 266:, 824–829.[PubMed]
    [Google Scholar]
  36. Soncini F. C., García Véscovi E., Solomon F., Groisman E. A.. ( 1996;). Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. . J Bacteriol 178:, 5092–5099.[PubMed]
    [Google Scholar]
  37. Stubben C. J., Duffield M. L., Cooper I. A., Ford D. C., Gans J. D., Karlyshev A. V., Lingard B., Oyston P. C. F., de Rochefort A.. & other authors ( 2009;). Steps toward broad-spectrum therapeutics: discovering virulence-associated genes present in diverse human pathogens. . BMC Genomics 10:, 501. [CrossRef][PubMed]
    [Google Scholar]
  38. Sun L. Y., Kosugi Y., Kawakami E., Piao Y. S., Hashimoto T., Oyanagi K.. ( 2009a;). Magnesium concentration in the cerebrospinal fluid of mice and its response to changes in serum magnesium concentration. . Magnes Res 22:, 266–272.[PubMed]
    [Google Scholar]
  39. Sun Y. C., Koumoutsi A., Darby C.. ( 2009b;). The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms. . FEMS Microbiol Lett 290:, 85–90. [CrossRef][PubMed]
    [Google Scholar]
  40. Tao T., Snavely M. D., Farr S. G., Maguire M. E.. ( 1995;). Magnesium transport in Salmonella typhimurium: mgtA encodes a P-type ATPase and is regulated by Mg2+ in a manner similar to that of the mgtB P-type ATPase. . J Bacteriol 177:, 2654–2662.[PubMed]
    [Google Scholar]
  41. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J.. ( 1987;). Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. . Proc Natl Acad Sci U S A 84:, 2833–2837. [CrossRef][PubMed]
    [Google Scholar]
  42. Wee S., Wilkinson B. J.. ( 1988;). Increased outer membrane ornithine-containing lipid and lysozyme penetrability of Paracoccus denitrificans grown in a complex medium deficient in divalent cations. . J Bacteriol 170:, 3283–3286.[PubMed]
    [Google Scholar]
  43. Zahorchak R. J., Brubaker R. R.. ( 1982;). Effect of exogenous nucleotides on Ca2+ dependence and V antigen synthesis in Yersinia pestis. . Infect Immun 38:, 953–959.
    [Google Scholar]
  44. Zhou D., Han Y., Qin L., Chen Z., Qiu J., Song Y., Li B., Wang J., Guo Z.. & other authors ( 2005;). Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis. . FEMS Microbiol Lett 250:, 85–95. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080556-0
Loading
/content/journal/micro/10.1099/mic.0.080556-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error