1887

Abstract

Members of the SNARE protein family participate in the docking–fusion step of several intracellular vesicular transport events. Vam7p was identified as a SNARE protein that acts in vacuolar protein transport and membrane fusion. However, in , there have been no reports regarding the counterpart of Vam7p. Here, we found that, although the SPCC594.06c gene has low similarity to Vam7p, the product of SPCC594.06c has a PX domain and SNARE motif like Vam7p, and thus we designated the gene (am-ike protein 1). The Δ cells showed no obvious defect in vacuolar protein transport. However, cells of the Δ mutant with a deletion of , which encodes another SNARE protein, displayed extreme defects in vacuolar protein transport and vacuolar morphology. Vsl1p was localized to the vacuolar membrane and prevacuolar compartment, and its PX domain was essential for proper localization. Expression of the fusion protein GFP-Vsl1p was able to suppress ZnCl sensitivity and the vacuolar protein sorting defect in the Δ cells. Moreover, GFP-Vsl1p was mislocalized in a Δ mutant and in cells overexpressing . Importantly, overexpression of could suppress the sensitivity to ZnCl of Δ cells and the vacuolar morphology defect of ΔΔ cells in . Taken together, these data suggest that Vsl1p and Fsv1p are required for vacuolar protein transport and membrane fusion, and they function cooperatively with Pep12p in the same membrane-trafficking step.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080481-0
2015-01-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/89.html?itemId=/content/journal/micro/10.1099/mic.0.080481-0&mimeType=html&fmt=ahah

References

  1. Armstrong J.. ( 2000;). Membrane traffic between genomes. . Genome Biol 1:, 10. [CrossRef][PubMed]
    [Google Scholar]
  2. Becherer K. A., Rieder S. E., Emr S. D., Jones E. W.. ( 1996;). Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. . Mol Biol Cell 7:, 579–594. [CrossRef][PubMed]
    [Google Scholar]
  3. Boeddinghaus C., Merz A. J., Laage R., Ungermann C.. ( 2002;). A cycle of Vam7p release from and PtdIns 3-P-dependent rebinding to the yeast vacuole is required for homotypic vacuole fusion. . J Cell Biol 157:, 79–90. [CrossRef][PubMed]
    [Google Scholar]
  4. Bone N., Millar J. B., Toda T., Armstrong J.. ( 1998;). Regulated vacuole fusion and fission in Schizosaccharomyces pombe: an osmotic response dependent on MAP kinases. . Curr Biol 8:, 135–144. [CrossRef][PubMed]
    [Google Scholar]
  5. Bowers K., Stevens T. H.. ( 2005;). Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. . Biochim Biophys Acta 1744:, 438–454. [CrossRef][PubMed]
    [Google Scholar]
  6. Cheever M. L., Sato T. K., de Beer T., Kutateladze T. G., Emr S. D., Overduin M.. ( 2001;). Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. . Nat Cell Biol 3:, 613–618. [CrossRef][PubMed]
    [Google Scholar]
  7. Cheng H., Sugiura R., Wu W., Fujita M., Lu Y., Sio S. O., Kawai R., Takegawa K., Shuntoh H., Kuno T.. ( 2002;). Role of the Rab GTP-binding protein Ypt3 in the fission yeast exocytic pathway and its connection to calcineurin function. . Mol Biol Cell 13:, 2963–2976. [CrossRef][PubMed]
    [Google Scholar]
  8. Darsow T., Rieder S. E., Emr S. D.. ( 1997;). A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. . J Cell Biol 138:, 517–529. [CrossRef][PubMed]
    [Google Scholar]
  9. Fukuda R., McNew J. A., Weber T., Parlati F., Engel T., Nickel W., Rothman J. E., Söllner T. H.. ( 2000;). Functional architecture of an intracellular membrane t-SNARE. . Nature 407:, 198–202. [CrossRef][PubMed]
    [Google Scholar]
  10. Gupta G. D., Heath I. B.. ( 2002;). Predicting the distribution, conservation, and functions of SNAREs and related proteins in fungi. . Fungal Genet Biol 36:, 1–21. [CrossRef][PubMed]
    [Google Scholar]
  11. Hong W.. ( 2005;). SNAREs and traffic. . Biochim Biophys Acta 1744:, 120–144. [CrossRef][PubMed]
    [Google Scholar]
  12. Hosomi A., Nakase M., Takegawa K.. ( 2011;). Schizosaccharomyces pombe Pep12p is required for vacuolar protein transport and vacuolar homotypic fusion. . J Biosci Bioeng 112:, 309–314. [CrossRef][PubMed]
    [Google Scholar]
  13. Iwaki T., Osawa F., Onishi M., Koga T., Fujita Y., Hosomi A., Tanaka N., Fukui Y., Takegawa K.. ( 2003;). Characterization of vps33+, a gene required for vacuolar biogenesis and protein sorting in Schizosaccharomyces pombe. . Yeast 20:, 845–855. [CrossRef][PubMed]
    [Google Scholar]
  14. Iwaki T., Hosomi A., Tokudomi S., Kusunoki Y., Fujita Y., Giga-Hama Y., Tanaka N., Takegawa K.. ( 2006;). Vacuolar protein sorting receptor in Schizosaccharomyces pombe. . Microbiology 152:, 1523–1532. [CrossRef][PubMed]
    [Google Scholar]
  15. Kobae Y., Uemura T., Sato M. H., Ohnishi M., Mimura T., Nakagawa T., Maeshima M.. ( 2004;). Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. . Plant Cell Physiol 45:, 1749–1758. [CrossRef][PubMed]
    [Google Scholar]
  16. Koga T., Onishi M., Nakamura Y., Hirata A., Nakamura T., Shimoda C., Iwaki T., Takegawa K., Fukui Y.. ( 2004;). Sorting nexin homologues are targets of phosphatidylinositol 3-phosphate in sporulation of Schizosaccharomyces pombe. . Genes Cells 9:, 561–574. [CrossRef][PubMed]
    [Google Scholar]
  17. Kuratsu M., Taura A., Shoji J. Y., Kikuchi S., Arioka M., Kitamoto K.. ( 2007;). Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. . Fungal Genet Biol 44:, 1310–1323. [CrossRef][PubMed]
    [Google Scholar]
  18. Kweon Y., Rothe A., Conibear E., Stevens T. H.. ( 2003;). Ykt6p is a multifunctional yeast R-SNARE that is required for multiple membrane transport pathways to the vacuole. . Mol Biol Cell 14:, 1868–1881. [CrossRef][PubMed]
    [Google Scholar]
  19. Lee S. A., Kovacs J., Stahelin R. V., Cheever M. L., Overduin M., Setty T. G., Burd C. G., Cho W., Kutateladze T. G.. ( 2006;). Molecular mechanism of membrane docking by the Vam7p PX domain. . J Biol Chem 281:, 37091–37101. [CrossRef][PubMed]
    [Google Scholar]
  20. McEwen R. K., Dove S. K., Cooke F. T., Painter G. F., Holmes A. B., Shisheva A., Ohya Y., Parker P. J., Michell R. H.. ( 1999;). Complementation analysis in PtdInsP kinase-deficient yeast mutants demonstrates that Schizosaccharomyces pombe and murine Fab1p homologues are phosphatidylinositol 3-phosphate 5-kinases. . J Biol Chem 274:, 33905–33912. [CrossRef][PubMed]
    [Google Scholar]
  21. McLeod M., Stein M., Beach D.. ( 1987;). The product of the mei3+ gene, expressed under control of the mating-type locus, induces meiosis and sporulation in fission yeast. . EMBO J 6:, 729–736.[PubMed]
    [Google Scholar]
  22. McNew J. A., Parlati F., Fukuda R., Johnston R. J., Paz K., Paumet F., Söllner T. H., Rothman J. E.. ( 2000;). Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. . Nature 407:, 153–159. [CrossRef][PubMed]
    [Google Scholar]
  23. Morishita M., Morimoto F., Kitamura K., Koga T., Fukui Y., Maekawa H., Yamashita I., Shimoda C.. ( 2002;). Phosphatidylinositol 3-phosphate 5-kinase is required for the cellular response to nutritional starvation and mating pheromone signals in Schizosaccharomyces pombe. . Genes Cells 7:, 199–215. [CrossRef][PubMed]
    [Google Scholar]
  24. Nakamura T., Nakamura-Kubo M., Hirata A., Shimoda C.. ( 2001;). The Schizosaccharomyces pombe spo3+ gene is required for assembly of the forespore membrane and genetically interacts with psy1+-encoding syntaxin-like protein. . Mol Biol Cell 12:, 3955–3972. [CrossRef][PubMed]
    [Google Scholar]
  25. Nakase M., Tani M., Morita T., Kitamoto H. K., Kashiwazaki J., Nakamura T., Hosomi A., Tanaka N., Takegawa K.. ( 2010;). Mannosylinositol phosphorylceramide is a major sphingolipid component and is required for proper localization of plasma-membrane proteins in Schizosaccharomyces pombe. . J Cell Sci 123:, 1578–1587. [CrossRef][PubMed]
    [Google Scholar]
  26. Onishi M., Nakamura Y., Koga T., Takegawa K., Fukui Y.. ( 2003;). Isolation of suppressor mutants of phosphatidylinositol 3-phosphate 5-kinase deficient cells in Schizosaccharomyces pombe. . Biosci Biotechnol Biochem 67:, 1772–1779. [CrossRef][PubMed]
    [Google Scholar]
  27. Pagani M. A., Casamayor A., Serrano R., Atrian S., Ariño J.. ( 2007;). Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study. . Mol Microbiol 65:, 521–537. [CrossRef][PubMed]
    [Google Scholar]
  28. Parlati F., McNew J. A., Fukuda R., Miller R., Söllner T. H., Rothman J. E.. ( 2000;). Topological restriction of SNARE-dependent membrane fusion. . Nature 407:, 194–198. [CrossRef][PubMed]
    [Google Scholar]
  29. Pelham H. R.. ( 1999;). SNAREs and the secretory pathway—lessons from yeast. . Exp Cell Res 247:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  30. Sato T. K., Darsow T., Emr S. D.. ( 1998;). Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. . Mol Cell Biol 18:, 5308–5319.[PubMed]
    [Google Scholar]
  31. Shoji J. Y., Arioka M., Kitamoto K.. ( 2006;). Vacuolar membrane dynamics in the filamentous fungus Aspergillus oryzae. . Eukaryot Cell 5:, 411–421. [CrossRef][PubMed]
    [Google Scholar]
  32. Söllner T., Whiteheart S. W., Brunner M., Erdjument-Bromage H., Geromanos S., Tempst P., Rothman J. E.. ( 1993;). SNAP receptors implicated in vesicle targeting and fusion. . Nature 362:, 318–324. [CrossRef][PubMed]
    [Google Scholar]
  33. Tabuchi M., Iwaihara O., Ohtani Y., Ohuchi N., Sakurai J., Morita T., Iwahara S., Takegawa K.. ( 1997a;). Vacuolar protein sorting in fission yeast: cloning, biosynthesis, transport, and processing of carboxypeptidase Y from Schizosaccharomyces pombe. . J Bacteriol 179:, 4179–4189.[PubMed]
    [Google Scholar]
  34. Tabuchi M., Tanaka N., Iwahara S., Takegawa K.. ( 1997b;). The Schizosaccharomyces pombe gms1+ gene encodes an UDP-galactose transporter homologue required for protein galactosylation. . Biochem Biophys Res Commun 232:, 121–125. [CrossRef][PubMed]
    [Google Scholar]
  35. Takegawa K., DeWald D. B., Emr S. D.. ( 1995;). Schizosaccharomyces pombe Vps34p, a phosphatidylinositol-specific PI 3-kinase essential for normal cell growth and vacuole morphology. . J Cell Sci 108:, 3745–3756.[PubMed]
    [Google Scholar]
  36. Takegawa K., Hosomi A., Iwaki T., Fujita Y., Morita T., Tanaka N.. ( 2003a;). Identification of a SNARE protein required for vacuolar protein transport in Schizosaccharomyces pombe. . Biochem Biophys Res Commun 311:, 77–82. [CrossRef][PubMed]
    [Google Scholar]
  37. Takegawa K., Iwaki T., Fujita Y., Morita T., Hosomi A., Tanaka N.. ( 2003b;). Vesicle-mediated protein transport pathways to the vacuole in Schizosaccharomyces pombe. . Cell Struct Funct 28:, 399–417. [CrossRef][PubMed]
    [Google Scholar]
  38. Tang B. L., Wang Y., Ong Y. S., Hong W.. ( 2005;). COPII and exit from the endoplasmic reticulum. . Biochim Biophys Acta 1744:, 293–303. [CrossRef][PubMed]
    [Google Scholar]
  39. Toonen R. F., Verhage M.. ( 2003;). Vesicle trafficking: pleasure and pain from SM genes. . Trends Cell Biol 13:, 177–186. [CrossRef][PubMed]
    [Google Scholar]
  40. Ungermann C., Langosch D.. ( 2005;). Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. . J Cell Sci 118:, 3819–3828. [CrossRef][PubMed]
    [Google Scholar]
  41. Ungermann C., Wickner W.. ( 1998;). Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. . EMBO J 17:, 3269–3276. [CrossRef][PubMed]
    [Google Scholar]
  42. Ungermann C., von Mollard G. F., Jensen O. N., Margolis N., Stevens T. H., Wickner W.. ( 1999;). Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. . J Cell Biol 145:, 1435–1442. [CrossRef][PubMed]
    [Google Scholar]
  43. van Vliet C., Thomas E. C., Merino-Trigo A., Teasdale R. D., Gleeson P. A.. ( 2003;). Intracellular sorting and transport of proteins. . Prog Biophys Mol Biol 83:, 1–45. [CrossRef][PubMed]
    [Google Scholar]
  44. Vida T. A., Emr S. D.. ( 1995;). A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. . J Cell Biol 128:, 779–792. [CrossRef][PubMed]
    [Google Scholar]
  45. von Mollard G. F., Nothwehr S. F., Stevens T. H.. ( 1997;). The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. . J Cell Biol 137:, 1511–1524. [CrossRef][PubMed]
    [Google Scholar]
  46. Wada Y., Nakamura N., Ohsumi Y., Hirata A.. ( 1997;). Vam3p, a new member of syntaxin related protein, is required for vacuolar assembly in the yeast Saccharomyces cerevisiae. . J Cell Sci 110:, 1299–1306.[PubMed]
    [Google Scholar]
  47. Watson P., Stephens D. J.. ( 2005;). ER-to-Golgi transport: form and formation of vesicular and tubular carriers. . Biochim Biophys Acta 1744:, 304–315. [CrossRef][PubMed]
    [Google Scholar]
  48. Wickner W.. ( 2002;). Yeast vacuoles and membrane fusion pathways. . EMBO J 21:, 1241–1247. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080481-0
Loading
/content/journal/micro/10.1099/mic.0.080481-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error