1887

Abstract

The human pathogen adapts to stress encountered in the mammalian host as part of its ability to cause disease. The transcription factor SrbA plays a significant role in this process by regulating genes involved in hypoxia and low-iron adaptation, antifungal drug responses and virulence. SrbA is a direct transcriptional regulator of genes encoding key enzymes in the ergosterol biosynthesis pathway, including and , and Δ accumulates C4-methyl sterols, suggesting a loss of Erg25 activity [C4-sterol methyl oxidase (SMO)]. Characterization of the two genes encoding SMOs in revealed that both serve as functional C4-demethylases, with Erg25A serving in a primary role, as Δ accumulates more C4-methyl sterol intermediates than Δ. Single deletion of these SMOs revealed alterations in canonical ergosterol biosynthesis, indicating that ergosterol may be produced in an alternative fashion in the absence of SMO activity. A Δ strain displayed moderate susceptibility to hypoxia and the endoplasmic reticulum stress-inducing agent DTT, but was not required for virulence in murine or insect models of invasive aspergillosis. Inducing expression of partially restored the hypoxia growth defect of Δ. These findings implicated SMOs in the maintenance of canonical ergosterol biosynthesis and indicated an overall involvement in the fungal stress response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080440-0
2014-11-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2492.html?itemId=/content/journal/micro/10.1099/mic.0.080440-0&mimeType=html&fmt=ahah

References

  1. Alcazar-Fuoli L., Mellado E., Garcia-Effron G., Lopez J. F., Grimalt J. O., Cuenca-Estrella J. M., Rodriguez-Tudela J. L..( 2008;). Ergosterol biosynthesis pathway in Aspergillus fumigatus. Steroids73:339–347 [CrossRef][PubMed]
    [Google Scholar]
  2. Altmann K., Westermann B..( 2005;). Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol Biol Cell16:5410–5417 [CrossRef][PubMed]
    [Google Scholar]
  3. Bammert G. F., Fostel J. M..( 2000;). Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother44:1255–1265 [CrossRef][PubMed]
    [Google Scholar]
  4. Bard M., Bruner D. A., Pierson C. A., Lees N. D., Biermann B., Frye L., Koegel C., Barbuch R..( 1996;). Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase. Proc Natl Acad Sci U S A93:186–190 [CrossRef][PubMed]
    [Google Scholar]
  5. Barker B. M., Kroll K., Vödisch M., Mazurie A., Kniemeyer O., Cramer R. A..( 2012;). Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter. BMC Genomics13:62 [CrossRef][PubMed]
    [Google Scholar]
  6. Barker K. S., Crisp S., Wiederhold N., Lewis R. E., Bareither B., Eckstein J., Barbuch R., Bard M., Rogers P. D..( 2004;). Genome-wide expression profiling reveals genes associated with amphotericin B and fluconazole resistance in experimentally induced antifungal resistant isolates of Candida albicans. J Antimicrob Chemother54:376–385 [CrossRef][PubMed]
    [Google Scholar]
  7. Benveniste P..( 2004;). Biosynthesis and accumulation of sterols. Annu Rev Plant Biol55:429–457 [CrossRef][PubMed]
    [Google Scholar]
  8. Bergin D., Reeves E. P., Renwick J., Wientjes F. B., Kavanagh K..( 2005;). Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun73:4161–4170 [CrossRef][PubMed]
    [Google Scholar]
  9. Blatzer M., Barker B. M., Willger S. D., Beckmann N., Blosser S. J., Cornish E. J., Mazurie A., Grahl N., Haas H., Cramer R. A..( 2011;). SREBP coordinates iron and ergosterol homeostasis to mediate triazole drug and hypoxia responses in the human fungal pathogen Aspergillus fumigatus. PLoS Genet7:e1002374 [CrossRef][PubMed]
    [Google Scholar]
  10. Blosser S. J., Cramer R. A..( 2012;). SREBP-dependent triazole susceptibility in Aspergillus fumigatus is mediated through direct transcriptional regulation of erg11A (cyp51A). Antimicrob Agents Chemother56:248–257 [CrossRef][PubMed]
    [Google Scholar]
  11. Blum G., Hörtnagl C., Jukic E., Erbeznik T., Pümpel T., Dietrich H., Nagl M., Speth C., Rambach G., Lass-Flörl C..( 2013;). New insight into amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother57:1583–1588 [CrossRef][PubMed]
    [Google Scholar]
  12. Borecká-Melkusová S., Moran G. P., Sullivan D. J., Kucharíková S., Chorvát D. Jr, Bujdáková H..( 2009;). The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. Mycoses52:118–128 [CrossRef][PubMed]
    [Google Scholar]
  13. Bouvier F., Rahier A., Camara B..( 2005;). Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res44:357–429 [CrossRef][PubMed]
    [Google Scholar]
  14. Brown J. S., Aufauvre-Brown A., Holden D. W..( 1998;). Insertional mutagenesis of Aspergillus fumigatus. Mol Gen Genet259:327–335 [CrossRef][PubMed]
    [Google Scholar]
  15. Castrillo A., Joseph S. B., Vaidya S. A., Haberland M., Fogelman A. M., Cheng G., Tontonoz P..( 2003;). Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell12:805–816 [CrossRef][PubMed]
    [Google Scholar]
  16. Chang Y. C., Bien C. M., Lee H., Espenshade P. J., Kwon-Chung K. J..( 2007;). Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Mol Microbiol64:614–629 [CrossRef][PubMed]
    [Google Scholar]
  17. d’Enfert C., Weidner G., Mol P. C., Brakhage A. A..( 1999;). Transformation systems of Aspergillus fumigatus. New tools to investigate fungal virulence. Contrib Microbiol2:149–166 [CrossRef][PubMed]
    [Google Scholar]
  18. da Silva Ferreira M. E., Colombo A. L., Paulsen I., Ren Q., Wortman J., Huang J., Goldman M. H., Goldman G. H..( 2005;). The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol43:Suppl 1S313–S319 [CrossRef][PubMed]
    [Google Scholar]
  19. da Silva Ferreira M. E., Malavazi I., Savoldi M., Brakhage A. A., Goldman M. H., Kim H. S., Nierman W. C., Goldman G. H..( 2006;). Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet50:32–44 [CrossRef][PubMed]
    [Google Scholar]
  20. Darnet S., Rahier A..( 2004;). Plant sterol biosynthesis: identification of two distinct families of sterol 4alpha-methyl oxidases. Biochem J378:889–898 [CrossRef][PubMed]
    [Google Scholar]
  21. Darnet S., Bard M., Rahier A..( 2001;). Functional identification of sterol-4alpha-methyl oxidase cDNAs from Arabidopsis thaliana by complementation of a yeast erg25 mutant lacking sterol-4alpha-methyl oxidation. FEBS Lett508:39–43 [CrossRef][PubMed]
    [Google Scholar]
  22. De Backer M. D., Ilyina T., Ma X. J., Vandoninck S., Luyten W. H., Vanden Bossche H..( 2001;). Genomic profiling of the response of Candida albicans to itraconazole treatment using a DNA microarray. Antimicrob Agents Chemother45:1660–1670 [CrossRef][PubMed]
    [Google Scholar]
  23. Diao Y., Zhao R., Diao Y., Zhao R., Deng X., Leng W., Peng J., Jin Q..( 2009;). Transcriptional profiles of Trichophyton rubrum in response to itraconazole. Med Mycol47:237–247 [CrossRef][PubMed]
    [Google Scholar]
  24. Feng X., Krishnan K., Richie D. L., Aimanianda V., Hartl L., Grahl N., Powers-Fletcher M. V., Zhang M., Fuller K. K..& other authors ( 2011;). HacA-independent functions of the ER stress sensor IreA synergize with the canonical UPR to influence virulence traits in Aspergillus fumigatus. PLoS Pathog7:e1002330 [CrossRef][PubMed]
    [Google Scholar]
  25. Florio A. M., Ingram C. M., Rakotondravony H. A., Louis E. E., Raxworthy C. J..( 2012;). Detecting cryptic speciation in the widespread and morphologically conservative carpet chameleon (Furcifer lateralis) of Madagascar. J Evol Biol25:1399–1414 [CrossRef][PubMed]
    [Google Scholar]
  26. Gachotte D., Pierson C. A., Lees N. D., Barbuch R., Koegel C., Bard M..( 1997;). A yeast sterol auxotroph (erg25) is rescued by addition of azole antifungals and reduced levels of heme. Proc Natl Acad Sci U S A94:11173–11178 [CrossRef][PubMed]
    [Google Scholar]
  27. Goad L. J., Akihisa T..( 1997;). Analysis of Sterols London: Chapman & Hall; [CrossRef]
    [Google Scholar]
  28. Goad L. J., Holz G. G. Jr, Beach D. H..( 1984;). Sterols of Leishmania species. Implications for biosynthesis. Mol Biochem Parasitol10:161–170 [CrossRef][PubMed]
    [Google Scholar]
  29. Grahl N., Puttikamonkul S., Macdonald J. M., Gamcsik M. P., Ngo L. Y., Hohl T. M., Cramer R. A..( 2011;). In vivo hypoxia and a fungal alcohol dehydrogenase influence the pathogenesis of invasive pulmonary aspergillosis. PLoS Pathog7:e1002145 [CrossRef][PubMed]
    [Google Scholar]
  30. Gray K. C., Palacios D. S., Dailey I., Endo M. M., Uno B. E., Wilcock B. C., Burke M. D..( 2012;). Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A109:2234–2239 [CrossRef][PubMed]
    [Google Scholar]
  31. Griffiths K. M., Bacic A., Howlett B. J..( 2003;). Sterol composition of mycelia of the plant pathogenic ascomycete Leptosphaeria maculans. Phytochemistry62:147–153 [CrossRef][PubMed]
    [Google Scholar]
  32. Hadrich I., Makni F., Neji S., Abbes S., Cheikhrouhou F., Trabelsi H., Sellami H., Ayadi A..( 2012;). Invasive aspergillosis: resistance to antifungal drugs. Mycopathologia174:131–141 [CrossRef][PubMed]
    [Google Scholar]
  33. Hameed S., Dhamgaye S., Singh A., Goswami S. K., Prasad R..( 2011;). Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans. PLoS ONE6:e18684 [CrossRef][PubMed]
    [Google Scholar]
  34. Hartmann T., Sasse C., Schedler A., Hasenberg M., Gunzer M., Krappmann S..( 2011;). Shaping the fungal adaptome – stress responses of Aspergillus fumigatus. Int J Med Microbiol301:408–416 [CrossRef][PubMed]
    [Google Scholar]
  35. He M., Kratz L. E., Michel J. J., Vallejo A. N., Ferris L., Kelley R. I., Hoover J. J., Jukic D., Gibson K. M..& other authors ( 2011;). Mutations in the human SC4MOL gene encoding a methyl sterol oxidase cause psoriasiform dermatitis, microcephaly, and developmental delay. J Clin Invest121:976–984 [CrossRef][PubMed]
    [Google Scholar]
  36. Hughes A. L., Lee C. Y., Bien C. M., Espenshade P. J..( 2007;). 4-Methyl sterols regulate fission yeast SREBP-Scap under low oxygen and cell stress. J Biol Chem282:24388–24396 [CrossRef][PubMed]
    [Google Scholar]
  37. Janowski B. A., Willy P. J., Devi T. R., Falck J. R., Mangelsdorf D. J..( 1996;). An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature383:728–731 [CrossRef][PubMed]
    [Google Scholar]
  38. Kainer M. A., Reagan D. R., Nguyen D. B., Wiese A. D., Wise M. E., Ward J., Park B. J., Kanago M. L., Baumblatt J..& other authors ( 2012;). Fungal infections associated with contaminated methylprednisolone in Tennessee. N Engl J Med367:2194–2203 [CrossRef][PubMed]
    [Google Scholar]
  39. Kelly S. L., Lamb D. C., Corran A. J., Baldwin B. C., Kelly D. E..( 1995;). Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3 beta,6 alpha-diol. Biochem Biophys Res Commun207:910–915 [CrossRef][PubMed]
    [Google Scholar]
  40. Kennedy M. A., Johnson T. A., Lees N. D., Barbuch R., Eckstein J. A., Bard M..( 2000;). Cloning and sequencing of the Candida albicans C-4 sterol methyl oxidase gene (ERG25) and expression of an ERG25 conditional lethal mutation in Saccharomyces cerevisiae. Lipids35:257–262 [CrossRef][PubMed]
    [Google Scholar]
  41. Kimura M., Kushiro T., Shibuya M., Ebizuka Y., Abe I..( 2010;). Protostadienol synthase from Aspergillus fumigatus: functional conversion into lanosterol synthase. Biochem Biophys Res Commun391:899–902 [CrossRef][PubMed]
    [Google Scholar]
  42. Kontoyiannis D. P..( 2000;). Modulation of fluconazole sensitivity by the interaction of mitochondria and Erg3p in Saccharomyces cerevisiae. J Antimicrob Chemother46:191–197 [CrossRef][PubMed]
    [Google Scholar]
  43. Latgé J. P..( 1999;). Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev12:310–350[PubMed]
    [Google Scholar]
  44. Lee H., Bien C. M., Hughes A. L., Espenshade P. J., Kwon-Chung K. J., Chang Y. C..( 2007;). Cobalt chloride, a hypoxia-mimicking agent, targets sterol synthesis in the pathogenic fungus Cryptococcus neoformans. Mol Microbiol65:1018–1033 [CrossRef][PubMed]
    [Google Scholar]
  45. Li L., Kaplan J..( 1996;). Characterization of yeast methyl sterol oxidase (ERG25) and identification of a human homologue. J Biol Chem271:16927–16933 [CrossRef][PubMed]
    [Google Scholar]
  46. Losada L., Barker B. M., Pakala S., Joardar V., Zafar N., Mounaud S., Fedorova N., Nierman W. C., Cramer R. A..( 2014;). Large-scale transcriptional response to hypoxia in Aspergillus fumigatus observed using RNAseq identifies a novel hypoxia regulated ncRNA. Mycopathologica [CrossRef]
    [Google Scholar]
  47. McCormick A., Jacobsen I. D., Broniszewska M., Beck J., Heesemann J., Ebel F..( 2012;). The two-component sensor kinase TcsC and its role in stress resistance of the human-pathogenic mold Aspergillus fumigatus. PLoS ONE7:e38262 [CrossRef][PubMed]
    [Google Scholar]
  48. Mo C., Bard M..( 2005;). Erg28p is a key protein in the yeast sterol biosynthetic enzyme complex. J Lipid Res46:1991–1998 [CrossRef][PubMed]
    [Google Scholar]
  49. Mo C., Valachovic M., Bard M..( 2004;). The ERG28-encoded protein, Erg28p, interacts with both the sterol C-4 demethylation enzyme complex as well as the late biosynthetic protein, the C-24 sterol methyltransferase (Erg6p). Biochim Biophys Acta1686:30–36 [CrossRef][PubMed]
    [Google Scholar]
  50. Nailis H., Vandenbosch D., Deforce D., Nelis H. J., Coenye T..( 2010;). Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms. Res Microbiol161:284–292 [CrossRef][PubMed]
    [Google Scholar]
  51. Nierman W. C., Pain A., Anderson M. J., Wortman J. R., Kim H. S., Arroyo J., Berriman M., Abe K., Archer D. B..& other authors ( 2005;). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature438:1151–1156 [CrossRef][PubMed]
    [Google Scholar]
  52. Oliver B. G., Silver P. M., Marie C., Hoot S. J., Leyde S. E., White T. C..( 2008;). Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiology154:960–970 [CrossRef][PubMed]
    [Google Scholar]
  53. Ott R. G., Athenstaedt K., Hrastnik C., Leitner E., Bergler H., Daum G..( 2005;). Flux of sterol intermediates in a yeast strain deleted of the lanosterol C-14 demethylase Erg11p. Biochim Biophys Acta1735:111–118 [CrossRef][PubMed]
    [Google Scholar]
  54. Pagano L., Caira M., Candoni A., Offidani M., Fianchi L., Martino B., Pastore D., Picardi M., Bonini A..& other authors ( 2006;). The epidemiology of fungal infections in patients with hematologic malignancies: the SEIFEM-2004 study. Haematologica91:1068–1075[PubMed]
    [Google Scholar]
  55. Petranyi G., Ryder N. S., Stütz A..( 1984;). Allylamine derivatives: new class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science224:1239–1241 [CrossRef][PubMed]
    [Google Scholar]
  56. Pirofski L. A., Casadevall A..( 2008;). The damage-response framework of microbial pathogenesis and infectious diseases. Adv Exp Med Biol635:135–146 [CrossRef][PubMed]
    [Google Scholar]
  57. Rahier A..( 2011;). Dissecting the sterol C-4 demethylation process in higher plants. From structures and genes to catalytic mechanism. Steroids76:340–352 [CrossRef][PubMed]
    [Google Scholar]
  58. Rahman M. D., Pascal R. A. Jr.( 1990;). Inhibitors of ergosterol biosynthesis and growth of the trypanosomatid protozoan Crithidia fasciculata.. J Biol Chem265:4989–4996[PubMed]
    [Google Scholar]
  59. Reeves E. P., Messina C. G., Doyle S., Kavanagh K..( 2004;). Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia158:73–79 [CrossRef][PubMed]
    [Google Scholar]
  60. Schinko T., Berger H., Lee W., Gallmetzer A., Pirker K., Pachlinger R., Buchner I., Reichenauer T., Güldener U., Strauss J..( 2010;). Transcriptome analysis of nitrate assimilation in Aspergillus nidulans reveals connections to nitric oxide metabolism. Mol Microbiol78:720–738 [CrossRef][PubMed]
    [Google Scholar]
  61. Shanklin J., Whittle E., Fox B. G..( 1994;). Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry33:12787–12794 [CrossRef][PubMed]
    [Google Scholar]
  62. Shimizu K., Keller N. P..( 2001;). Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics157:591–600[PubMed]
    [Google Scholar]
  63. Snelders E., Karawajczyk A., Verhoeven R. J., Venselaar H., Schaftenaar G., Verweij P. E., Melchers W. J..( 2011a;). The structure–function relationship of the Aspergillus fumigatus cyp51A L98H conversion by site-directed mutagenesis: the mechanism of L98H azole resistance. Fungal Genet Biol48:1062–1070 [CrossRef][PubMed]
    [Google Scholar]
  64. Snelders E., Melchers W. J., Verweij P. E..( 2011b;). Azole resistance in Aspergillus fumigatus: a new challenge in the management of invasive aspergillosis. Future Microbiol6:335–347 [CrossRef][PubMed]
    [Google Scholar]
  65. Sukhanova A., Gorin A., Serebriiskii I. G., Gabitova L., Zheng H., Restifo D., Egleston B. L., Cunningham D., Bagnyukova T..& other authors ( 2013;). Targeting C4-demethylating genes in the cholesterol pathway sensitizes cancer cells to EGF receptor inhibitors via increased EGF receptor degradation. Cancer Discov3:96–111 [CrossRef][PubMed]
    [Google Scholar]
  66. Tamame M., Antequera F., Villanueva J. R., Santos T..( 1983;). High-frequency conversion to a “fluffy” developmental phenotype in Aspergillus spp. by 5-azacytidine treatment: evidence for involvement of a single nuclear gene. Mol Cell Biol3:2287–2297[PubMed]
    [Google Scholar]
  67. Tenholder M. F..( 1985;). The many faces of pulmonary aspergillosis. Prim Care12:353–368[PubMed]
    [Google Scholar]
  68. Van Leeuwen M. R., Smant W., de Boer W., Dijksterhuis J..( 2008;). Filipin is a reliable in situ marker of ergosterol in the plasma membrane of germinating conidia (spores) of Penicillium discolor and stains intensively at the site of germ tube formation. J Microbiol Methods74:64–73 [CrossRef][PubMed]
    [Google Scholar]
  69. Venkatramesh M., Nes W. D..( 1995;). Novel sterol transformations promoted by Saccharomyces cerevisiae strain GL7: evidence for 9 beta, 19-cyclopropyl to 9(11)-isomerization and for 14-demethylation to 8(14)-sterols. Arch Biochem Biophys324:189–199 [CrossRef][PubMed]
    [Google Scholar]
  70. Walsh T. J., Petraitis V., Petraitiene R., Field-Ridley A., Sutton D., Ghannoum M., Sein T., Schaufele R., Peter J..& other authors ( 2003;). Experimental pulmonary aspergillosis due to Aspergillus terreus: pathogenesis and treatment of an emerging fungal pathogen resistant to amphotericin B. J Infect Dis188:305–319 [CrossRef][PubMed]
    [Google Scholar]
  71. Weete J. D., Gandhi S. R..( 1997;). Sterols of the phylum zygomycota: phylogenetic implications. Lipids32:1309–1316 [CrossRef][PubMed]
    [Google Scholar]
  72. White T. C., Harry J., Oliver B. G..( 2003;). Antifungal drug resistance: pumps and permutations. Human Fungal Pathogens319–338 Domer J. E., Kobayashi G. S.. Berlin: Springer;
    [Google Scholar]
  73. Willger S. D., Puttikamonkul S., Kim K. H., Burritt J. B., Grahl N., Metzler L. J., Barbuch R., Bard M., Lawrence C. B., Cramer R. A. Jr.( 2008;). A sterol-regulatory element binding protein is required for cell polarity, hypoxia adaptation, azole drug resistance, and virulence in Aspergillus fumigatus. PLoS Pathog4:e1000200 [CrossRef][PubMed]
    [Google Scholar]
  74. Willger S. D., Cornish E. J., Chung D., Fleming B. A., Lehmann M. M., Puttikamonkul S., Cramer R. A..( 2012;). Dsc orthologs are required for hypoxia adaptation, triazole drug responses, and fungal virulence in Aspergillus fumigatus. Eukaryot Cell11:1557–1567 [CrossRef][PubMed]
    [Google Scholar]
  75. Yu J. H., Hamari Z., Han K. H., Seo J. A., Reyes-Domínguez Y., Scazzocchio C..( 2004;). Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol41:973–981 [CrossRef][PubMed]
    [Google Scholar]
  76. Zhou S., Fushinobu S., Nakanishi Y., Kim S. W., Wakagi T., Shoun H..( 2009;). Cloning and characterization of two flavohemoglobins from Aspergillus oryzae. Biochem Biophys Res Commun381:7–11 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080440-0
Loading
/content/journal/micro/10.1099/mic.0.080440-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error