Styrene oxide isomerase of sp. Kp5.2 Free

Abstract

Styrene oxide isomerase (SOI) catalyses the isomerization of styrene oxide to phenylacetaldehyde. The enzyme is involved in the aerobic styrene catabolism via side-chain oxidation and allows the biotechnological production of flavours. Here, we reported the isolation of new styrene-degrading bacteria that allowed us to identify novel SOIs. Out of an initial pool of 87 strains potentially utilizing styrene as the sole carbon source, just 14 were found to possess SOI activity. Selected strains were classified phylogenetically based on 16S rRNA genes, screened for SOI genes and styrene-catabolic gene clusters, as well as assayed for SOI production and activity. Genome sequencing allowed bioinformatic analysis of several SOI gene clusters. The isolate sp. Kp5.2 was most interesting in that regard because to our knowledge this is the first time it was shown that a member of the family utilized styrene as the sole carbon source by side-chain oxidation. The corresponding SOI showed a considerable activity of 3.1 U (mg protein). Most importantly, a higher resistance toward product inhibition in comparison with other SOIs was determined. A phylogenetic analysis of SOIs allowed classification of these biocatalysts from various bacteria and showed the exceptional position of SOI from strain Kp5.2.

Funding
This study was supported by the:
  • Deutsche Bundesstiftung Umwelt
  • European Social Fund and the Saxonian Government (Award GETGEOWEB: 100101363)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080259-0
2014-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2481.html?itemId=/content/journal/micro/10.1099/mic.0.080259-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Baggi G., Boga M. M., Catelani D., Galli E., Treccani V. ( 1983). Styrene catabolism by a strain of Pseudomonas fluorescens. Syst Appl Microbiol 4:141–147 [View Article][PubMed]
    [Google Scholar]
  4. Beltrametti F., Marconi A. M., Bestetti G., Colombo C., Galli E., Ruzzi M., Zennaro E. ( 1997). Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol 63:2232–2239[PubMed]
    [Google Scholar]
  5. Bestetti G., Di Gennaro P. D., Colmegna A., Ronco I., Galli E., Sello G. ( 2004). Characterization of styrene catabolic pathway in Pseudomonas fluorescens ST. Int Biodeterior Biodegradation 54:183–187 [View Article]
    [Google Scholar]
  6. Bonfield J. K., Smith K., Staden R. ( 1995). A new DNA sequence assembly program. Nucleic Acids Res 23:4992–4999 [View Article][PubMed]
    [Google Scholar]
  7. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  8. Dorn E., Hellwig M., Reineke W., Knackmuss H.-J. ( 1974). Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99:61–70 [View Article][PubMed]
    [Google Scholar]
  9. Dutta T. K., Chakraborty J., Roy M., Ghosal D., Khara P., Gunsalus I. C. ( 2010). Cloning and characterization of a p-cymene monooxygenase from Pseudomonas chlororaphis subsp. aureofaciens. Res Microbiol 161:876–882 [View Article][PubMed]
    [Google Scholar]
  10. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. ( 1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853 [View Article][PubMed]
    [Google Scholar]
  11. Gorlatov S. N., Maltseva O. V., Shevchenko V. I., Golovleva L. A. ( 1989). Degradation of chlorophenols by a culture of Rhodococcus erythropolis. Microbiology 58:647–651
    [Google Scholar]
  12. Hartmans S., Smits J. P., van der Werf M. J., Volkering F., de Bont J. A. M. ( 1989). Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol 55:2850–2855[PubMed]
    [Google Scholar]
  13. Hartmans S., van der Werf M. J., de Bont J. A. M. ( 1990). Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol 56:1347–1351[PubMed]
    [Google Scholar]
  14. Higgins D. G., Sharp P. M. ( 1988). clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244 [View Article][PubMed]
    [Google Scholar]
  15. Hölderich W. H., Barsnick U. ( 2001). Rearrangement of epoxides. Fine Chemicals Through Heterogeneous Catalysis217–231 Sheldon S. A., van Bekkum H. Weinheim: Wiley-VCH;
    [Google Scholar]
  16. Huijbers M. M. E., Montersino S., Westphal A. H., Tischler D., van Berkel W. J. H. ( 2014). Flavin dependent monooxygenases. Arch Biochem Biophys 544:2–17 [View Article][PubMed]
    [Google Scholar]
  17. Itoh N., Hayashi K., Okada K., Ito T., Mizuguchi N. ( 1997). Characterization of styrene oxide isomerase, a key enzyme of styrene and styrene oxide metabolism in Corynebacterium sp.. Biosci Biotechnol Biochem 61:2058–2062 [View Article]
    [Google Scholar]
  18. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. L. ( 2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 [View Article][PubMed]
    [Google Scholar]
  19. Lane D. J. ( 1991). 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics133 Stackebrandt E., Goodfellow M. Weinheim: Wiley-VCH;
    [Google Scholar]
  20. Larkin M. J., De Mot R., Kulakov L. A., Nagy I. ( 1998). Applied aspects of Rhodococcus genetics. Antonie van Leeuwenhoek 74:133–153 [View Article][PubMed]
    [Google Scholar]
  21. Lin H., Qiao J., Liu Y., Wu Z.-L. ( 2010). Styrene monooxygenase from Pseudomonas sp. LQ26 catalyzes the asymmetric epoxidation of both conjugated and unconjugated alkenes. J Mol Catal B Enzym 67:236–241 [View Article]
    [Google Scholar]
  22. Miyamoto K., Okuro K., Ohta H. ( 2007). Substrate specificity and reaction mechanism of recombinant styrene oxide isomerase from Pseudomonas putida S12. Tetrahedron Lett 48:3255–3257 [View Article]
    [Google Scholar]
  23. Mooney A., Ward P. G., O’Connor K. E. ( 2006). Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications. Appl Microbiol Biotechnol 72:1–10 [View Article][PubMed]
    [Google Scholar]
  24. Nicholas K. B., Nicholas H. B. J., Deerfield D. W. I. ( 1997). GeneDoc: analysis and visualization of genetic variation. EMBNEW News 4:14
    [Google Scholar]
  25. O’Connor K., Buckley C. M., Hartmans S., Dobson A. D. W. ( 1995). Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl Environ Microbiol 61:544–548[PubMed]
    [Google Scholar]
  26. O’Leary N. D., O’Connor K. E., Duetz W., Dobson A. D. W. ( 2001). Transcriptional regulation of styrene degradation in Pseudomonas putida CA-3. Microbiology 147:973–979[PubMed]
    [Google Scholar]
  27. Oelschlägel M., Gröning J. A. D., Tischler D., Kaschabek S. R., Schlömann M. ( 2012). Styrene oxide isomerase of Rhodococcus opacus 1CP, a highly stable and considerably active enzyme. Appl Environ Microbiol 78:4330–4337 [View Article][PubMed]
    [Google Scholar]
  28. Oelschlägel M., Riedel A., Zniszczoł A., Szymańska K., Jarzębski A. B., Schlömann M., Tischler D. ( 2014). Immobilization of an integral membrane protein for biotechnological phenylacetaldehyde production. J Biotechnol 174:7–13 [View Article][PubMed]
    [Google Scholar]
  29. Panke S., Witholt B., Schmid A., Wubbolts M. G. ( 1998). Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl Environ Microbiol 64:2032–2043[PubMed]
    [Google Scholar]
  30. Park M. S., Bae J. W., Han J. H., Lee E. Y., Lee S.-G., Park S. ( 2006). Characterization of styrene catabolic genes of Pseudomonas putida SN1 and construction of a recombinant Escherichia coli containing styrene monooxygenase gene for the production of (S)-styrene oxide. J Microbiol Biotechnol 16:1032–1040 [View Article]
    [Google Scholar]
  31. Patrauchan M. A., Florizone C., Eapen S., Gómez-Gil L., Sethuraman B., Fukuda M., Davies J., Mohn W. W., Eltis L. D. ( 2008). Roles of ring-hydroxylating dioxygenases in styrene and benzene catabolism in Rhodococcus jostii RHA1. J Bacteriol 190:37–47 [View Article][PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  33. Teufel R., Mascaraque V., Ismail W., Voss M., Perera J., Eisenreich W., Haehnel W., Fuchs G. ( 2010). Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci U S A 107:14390–14395 [View Article][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  35. Tischler D., Kaschabek S. R. ( 2012). Microbiological styrene degradation: from basics to biotechnology. Microbial Degradation of Xenobiotics, Environmental Science and Engineering67–99 Singh S. N. Heidelberg: Springer; [View Article]
    [Google Scholar]
  36. Tischler D., Eulberg D., Lakner S., Kaschabek S. R., van Berkel W. J. H., Schlömann M. ( 2009). Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP. J Bacteriol 191:4996–5009 [View Article][PubMed]
    [Google Scholar]
  37. Tischler D., Gröning J. A. D., Kaschabek S. R., Schlömann M. ( 2012). One-component styrene monooxygenases: an evolutionary view on a rare class of flavoproteins. Appl Biochem Biotechnol 167:931–944 [View Article][PubMed]
    [Google Scholar]
  38. Toda H., Itoh N. ( 2012). Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10. J Biosci Bioeng 113:12–19 [View Article][PubMed]
    [Google Scholar]
  39. Tsitko I. V., Zaitsev G. M., Lobanok A. G., Salkinoja-Salonen M. S. ( 1999). Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Appl Environ Microbiol 65:853–855[PubMed]
    [Google Scholar]
  40. Velasco A., Alonso S., García J. L., Perera J., Díaz E. ( 1998). Genetic and functional analysis of the styrene catabolic cluster of Pseudomonas sp. strain Y2. J Bacteriol 180:1063–1071[PubMed]
    [Google Scholar]
  41. Warhurst A. M., Clarke K. F., Hill R. A., Holt R. A., Fewson C. A. ( 1994). Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Appl Environ Microbiol 60:1137–1145[PubMed]
    [Google Scholar]
  42. Wilson K. ( 2001). Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology2.4.1–2.4.5 Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Green/Wiley; [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080259-0
Loading
/content/journal/micro/10.1099/mic.0.080259-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed