1887

Abstract

P-type Ca-transporting ATPases are Ca pumps, extruding cytosolic Ca to the extracellular environment or the intracellular Ca store lumens. In budding yeast, Pmr1 (plasma membrane ATPase related), and Pmc1 (plasma membrane calcium-ATPase) cannot be deleted simultaneously for it to survive in standard medium. Here, we deleted two putative Ca pumps, designated AnPmrA and AnPmcA, from , and obtained the mutants Δ and Δ, respectively. Then, using Δ as the starting strain, the promoter of its was replaced with the promoter to secure the mutant Δ or its was deleted completely to produce the mutant ΔΔ. Different from the case in , double deletion of and was not lethal in . In addition, deletion of and/or had produced growth defects, although overexpression of AnPmc1 in Δ could not restore the growth defects that resulted from the loss of AnPmrA. Moreover, we found AnPmrA was indispensable for maintenance of normal morphogenesis, especially in low-Ca/Mn environments. Thus, our findings suggest AnPmrA and AnPmcA might play important roles in growth, morphogenesis and cell wall integrity in in a different way from that in yeasts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080119-0
2014-11-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2387.html?itemId=/content/journal/micro/10.1099/mic.0.080119-0&mimeType=html&fmt=ahah

References

  1. Alam M. K., El-Ganiny A. M., Afroz S., Sanders D. A., Liu J., Kaminskyj S. G.. ( 2012;). Aspergillus nidulans galactofuranose biosynthesis affects antifungal drug sensitivity. . Fungal Genet Biol 49:, 1033–1043. [CrossRef][PubMed]
    [Google Scholar]
  2. Bates S., MacCallum D. M., Bertram G., Munro C. A., Hughes H. B., Buurman E. T., Brown A. J., Odds F. C., Gow N. A.. ( 2005;). Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. . J Biol Chem 280:, 23408–23415. [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman B. J., Draskovic M., Freitag M., Bowman E. J.. ( 2009;). Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. . Eukaryot Cell 8:, 1845–1855. [CrossRef][PubMed]
    [Google Scholar]
  4. Bowman B. J., Abreu S., Margolles-Clark E., Draskovic M., Bowman E. J.. ( 2011;). Role of four calcium transport proteins, encoded by nca-1, nca-2, nca-3, and cax, in maintaining intracellular calcium levels in Neurospora crassa. . Eukaryot Cell 10:, 654–661. [CrossRef][PubMed]
    [Google Scholar]
  5. Bussink H. J., Osmani S. A.. ( 1998;). A cyclin-dependent kinase family member (PHOA) is required to link developmental fate to environmental conditions in Aspergillus nidulans. . EMBO J 17:, 3990–4003. [CrossRef][PubMed]
    [Google Scholar]
  6. Catty P., de Kerchove d’Exaerde A., Goffeau A.. ( 1997;). The complete inventory of the yeast Saccharomyces cerevisiae P-type transport ATPases. . FEBS Lett 409:, 325–332. [CrossRef][PubMed]
    [Google Scholar]
  7. Colabardini A. C., De Castro P. A., De Gouvêa P. F., Savoldi M., Malavazi I., Goldman M. H., Goldman G. H.. ( 2010;). Involvement of the Aspergillus nidulans protein kinase C with farnesol tolerance is related to the unfolded protein response. . Mol Microbiol 78:, 1259–1279. [CrossRef][PubMed]
    [Google Scholar]
  8. Cronin S. R., Khoury A., Ferry D. K., Hampton R. Y.. ( 2000;). Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p. . J Cell Biol 148:, 915–924. [CrossRef][PubMed]
    [Google Scholar]
  9. Cunningham K. W.. ( 2011;). Acidic calcium stores of Saccharomyces cerevisiae. . Cell Calcium 50:, 129–138. [CrossRef][PubMed]
    [Google Scholar]
  10. Cunningham K. W., Fink G. R.. ( 1994;). Ca2+ transport in Saccharomyces cerevisiae. . J Exp Biol 196:, 157–166.[PubMed]
    [Google Scholar]
  11. Dubois M., Gilles K., Hamilton J. K., Rebers P. A., Smith F.. ( 1951;). A colorimetric method for the determination of sugars. . Nature 168:, 167. [CrossRef][PubMed]
    [Google Scholar]
  12. Elorza M. V., Murgui A., Sentandreu R.. ( 1985;). Dimorphism in Candida albicans: contribution of mannoproteins to the architecture of yeast and mycelial cell walls. . J Gen Microbiol 131:, 2209–2216. [CrossRef][PubMed]
    [Google Scholar]
  13. Fujioka T., Mizutani O., Furukawa K., Sato N., Yoshimi A., Yamagata Y., Nakajima T., Abe K.. ( 2007;). MpkA-dependent and -independent cell wall integrity signaling in Aspergillus nidulans. . Eukaryot Cell 6:, 1497–1510. [CrossRef][PubMed]
    [Google Scholar]
  14. Futagami T., Nakao S., Kido Y., Oka T., Kajiwara Y., Takashita H., Omori T., Furukawa K., Goto M.. ( 2011;). Putative stress sensors WscA and WscB are involved in hypo-osmotic and acidic pH stress tolerance in Aspergillus nidulans. . Eukaryot Cell 10:, 1504–1515. [CrossRef][PubMed]
    [Google Scholar]
  15. Hearn V. M., Sietsma J. H.. ( 1994;). Chemical and immunological analysis of the Aspergillus fumigatus cell wall. . Microbiology 140:, 789–795. [CrossRef][PubMed]
    [Google Scholar]
  16. Herth W.. ( 1980;). Calcofluor white and Congo red inhibit chitin microfibril assembly of Poterioochromonas: evidence for a gap between polymerization and microfibril formation. . J Cell Biol 87:, 442–450. [CrossRef][PubMed]
    [Google Scholar]
  17. Ichinomiya M., Ohta A., Horiuchi H.. ( 2005;). Expression of asexual developmental regulator gene abaA is affected in the double mutants of classes I and II chitin synthase genes, chsC and chsA, of Aspergillus nidulans. . Curr Genet 48:, 171–183. [CrossRef][PubMed]
    [Google Scholar]
  18. Jiang Z., Hu Z., Zeng L., Lu W., Zhang H., Li T., Xiao H.. ( 2011;). The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria?. Free Radic Biol Med 50:, 907–917. [CrossRef][PubMed]
    [Google Scholar]
  19. Jiang H., Shen Y., Liu W., Lu L.. ( 2014;). Deletion of the putative stretch-activated ion channel Mid1 is hypervirulent in Aspergillus fumigatus. . Fungal Genet Biol 62:, 62–70. [CrossRef][PubMed]
    [Google Scholar]
  20. Kapteyn J. C., Van Den Ende H., Klis F. M.. ( 1999;). The contribution of cell wall proteins to the organization of the yeast cell wall. . Biochim Biophys Acta 1426:, 373–383. [CrossRef][PubMed]
    [Google Scholar]
  21. Kellermayer R., Aiello D. P., Miseta A., Bedwell D. M.. ( 2003;). Extracellular Ca2+ sensing contributes to excess Ca2+ accumulation and vacuolar fragmentation in a pmr1Δ mutant of S. cerevisiae. . J Cell Sci 116:, 1637–1646. [CrossRef][PubMed]
    [Google Scholar]
  22. Lauer Júnior C. M., Bonatto D., Mielniczki-Pereira A. A., Schuch A. Z., Dias J. F., Yoneama M. L., Pêgas Henriques J. A.. ( 2008;). The Pmr1 protein, the major yeast Ca2+-ATPase in the Golgi, regulates intracellular levels of the cadmium ion. . FEMS Microbiol Lett 285:, 79–88. [CrossRef][PubMed]
    [Google Scholar]
  23. Lee J. I., Yu Y. M., Rho Y. M., Park B. C., Choi J. H., Park H. M., Maeng P. J.. ( 2005;). Differential expression of the chsE gene encoding a chitin synthase of Aspergillus nidulans in response to developmental status and growth conditions. . FEMS Microbiol Lett 249:, 121–129. [CrossRef][PubMed]
    [Google Scholar]
  24. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. ( 1951;). Protein measurement with the Folin phenol reagent. . J Biol Chem 193:, 265–275.[PubMed]
    [Google Scholar]
  25. Micaroni M., Perinetti G., Berrie C. P., Mironov A. A.. ( 2010;). The SPCA1 Ca2+ pump and intracellular membrane trafficking. . Traffic 11:, 1315–1333. [CrossRef][PubMed]
    [Google Scholar]
  26. Moreno S. N., Docampo R.. ( 2009;). The role of acidocalcisomes in parasitic protists. . J Eukaryot Microbiol 56:, 208–213. [CrossRef][PubMed]
    [Google Scholar]
  27. Nilsson T., Au C. E., Bergeron J. J.. ( 2009;). Sorting out glycosylation enzymes in the Golgi apparatus. . FEBS Lett 583:, 3764–3769. [CrossRef][PubMed]
    [Google Scholar]
  28. Panozzo C., Cornillot E., Felenbok B.. ( 1998;). The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. . J Biol Chem 273:, 6367–6372. [CrossRef][PubMed]
    [Google Scholar]
  29. Park S. Y., Seo S. B., Lee S. J., Na J. G., Kim Y. J.. ( 2001;). Mutation in PMR1, a Ca2+-ATPase in Golgi, confers salt tolerance in Saccharomyces cerevisiae by inducing expression of PMR2, an Na+-ATPase in plasma membrane. . J Biol Chem 276:, 28694–28699. [CrossRef][PubMed]
    [Google Scholar]
  30. Roncero C., Durán A.. ( 1985;). Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. . J Bacteriol 163:, 1180–1185.[PubMed]
    [Google Scholar]
  31. Shull G. E.. ( 2000;). Gene knockout studies of Ca2+-transporting ATPases. . Eur J Biochem 267:, 5284–5290. [CrossRef][PubMed]
    [Google Scholar]
  32. Trevisan G. L., Oliveira E. H., Peres N. T., Cruz A. H., Martinez-Rossi N. M., Rossi A.. ( 2011;). Transcription of Aspergillus nidulans pacC is modulated by alternative RNA splicing of palB. . FEBS Lett 585:, 3442–3445. [CrossRef][PubMed]
    [Google Scholar]
  33. Upadhyay S., Shaw B. D.. ( 2006;). A phosphoglucose isomerase mutant in Aspergillus nidulans is defective in hyphal polarity and conidiation. . Fungal Genet Biol 43:, 739–751. [CrossRef][PubMed]
    [Google Scholar]
  34. Wada Y., Anraku Y.. ( 1994;). Chemiosmotic coupling of ion transport in the yeast vacuole: its role in acidification inside organelles. . J Bioenerg Biomembr 26:, 631–637. [CrossRef][PubMed]
    [Google Scholar]
  35. Wang S., Cao J., Liu X., Hu H., Shi J., Zhang S., Keller N. P., Lu L.. ( 2012;). Putative calcium channels CchA and MidA play the important roles in conidiation, hyphal polarity and cell wall components in Aspergillus nidulans. . PLoS ONE 7:, e46564. [CrossRef][PubMed]
    [Google Scholar]
  36. Wuytack F., Raeymaekers L., Missiaen L.. ( 2003;). PMR1/SPCA Ca2+ pumps and the role of the Golgi apparatus as a Ca2+ store. . Pflugers Arch 446:, 148–153.[PubMed]
    [Google Scholar]
  37. Yoshimi A., Sano M., Inaba A., Kokubun Y., Fujioka T., Mizutani O., Hagiwara D., Fujikawa T., Nishimura M.. & other authors ( 2013;). Functional analysis of the α-1,3-glucan synthase genes agsA and agsB in Aspergillus nidulans: agsB is the major α-1,3-glucan synthase in this fungus. . PLoS ONE 8:, e54893. [CrossRef][PubMed]
    [Google Scholar]
  38. Yu Q., Wang H., Xu N., Cheng X., Wang Y., Zhang B., Xing L., Li M.. ( 2012;). Spf1 strongly influences calcium homeostasis, hyphal development, biofilm formation and virulence in Candida albicans. . Microbiology 158:, 2272–2282. [CrossRef][PubMed]
    [Google Scholar]
  39. Zarrin M., Leeder A. C., Turner G.. ( 2005;). A rapid method for promoter exchange in Aspergillus nidulans using recombinant PCR. . Fungal Genet Biol 42:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080119-0
Loading
/content/journal/micro/10.1099/mic.0.080119-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error