1887

Abstract

The marine bacterium , a major cause of food-borne gastroenteritis, employs a type VI secretion system 1 (T6SS1), a recently discovered protein secretion system, to combat competing bacteria. Environmental signals such as temperature, salinity, cell density and surface sensing, as well as the quorum-sensing master regulator OpaR, were previously reported to regulate T6SS1 activity and expression. In this work, we set out to identify additional transcription regulators that control the tightly regulated T6SS1 activity. To this end, we determined the effect of deletions in several known virulence regulators and in two regulators encoded within the T6SS1 gene cluster on expression and secretion of the core T6SS component Hcp1 and on T6SS1-mediated anti-bacterial activity. We report that VP1391 and VP1407, transcriptional regulators encoded within the T6SS1 gene cluster, are essential for T6SS1 activity. Moreover, we found that H-NS, a bacterial histone-like nucleoid structuring protein, which mediates transcription silencing of horizontally acquired genes, serves as a repressor of T6SS1. We also show that activation of surface sensing and high salt conditions alleviate the H-NS-mediated repression. Our results shed light on the complex network of environmental signals and transcription regulators that govern the tight regulation over T6SS1 activity.

Funding
This study was supported by the:
  • NIH-Allergy and Infectious Disease (Award R01-AI056404)
  • Welch Foundation (Award I-1561)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080028-0
2014-09-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1867.html?itemId=/content/journal/micro/10.1099/mic.0.080028-0&mimeType=html&fmt=ahah

References

  1. Atlung T., Ingmer H. ( 1997). H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 24:7–17 [View Article][PubMed]
    [Google Scholar]
  2. Basler M., Pilhofer M., Henderson G. P., Jensen G. J., Mekalanos J. J. ( 2012). Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:182–186 [View Article][PubMed]
    [Google Scholar]
  3. Bernard C. S., Brunet Y. R., Gueguen E., Cascales E. ( 2010). Nooks and crannies in type VI secretion regulation. J Bacteriol 192:3850–3860 [View Article][PubMed]
    [Google Scholar]
  4. Boyer F., Fichant G., Berthod J., Vandenbrouck Y., Attree I. ( 2009). Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources?. BMC Genomics 10:104 [View Article][PubMed]
    [Google Scholar]
  5. Brunet Y. R., Hénin J., Celia H., Cascales E. ( 2014). Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 15:315–321 [View Article][PubMed]
    [Google Scholar]
  6. Eagon R. G. ( 1962). Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J Bacteriol 83:736–737[PubMed]
    [Google Scholar]
  7. Eijkelkamp B. A., Stroeher U. H., Hassan K. A., Elbourne L. D., Paulsen I. T., Brown M. H. ( 2013). H-NS plays a role in expression of Acinetobacter baumannii virulence features. Infect Immun 81:2574–2583 [View Article][PubMed]
    [Google Scholar]
  8. Gode-Potratz C. J., McCarter L. L. ( 2011). Quorum sensing and silencing in Vibrio parahaemolyticus. J Bacteriol 193:4224–4237 [View Article][PubMed]
    [Google Scholar]
  9. Gode-Potratz C. J., Chodur D. M., McCarter L. L. ( 2010). Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. J Bacteriol 192:6025–6038 [View Article][PubMed]
    [Google Scholar]
  10. Gode-Potratz C. J., Kustusch R. J., Breheny P. J., Weiss D. S., McCarter L. L. ( 2011). Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol 79:240–263 [View Article][PubMed]
    [Google Scholar]
  11. Hachani A., Lossi N. S., Hamilton A., Jones C., Bleves S., Albesa-Jové D., Filloux A. ( 2011). Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J Biol Chem 286:12317–12327 [View Article][PubMed]
    [Google Scholar]
  12. Ho B. T., Basler M., Mekalanos J. J. ( 2013). Type 6 secretion system-mediated immunity to type 4 secretion system-mediated gene transfer. Science 342:250–253 [View Article][PubMed]
    [Google Scholar]
  13. Ho B. T., Dong T. G., Mekalanos J. J. ( 2014). A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15:9–21 [View Article][PubMed]
    [Google Scholar]
  14. Hockett K. L., Burch A. Y., Lindow S. E. ( 2013). Thermo-regulation of genes mediating motility and plant interactions in Pseudomonas syringae. PLoS ONE 8:e59850 [View Article][PubMed]
    [Google Scholar]
  15. Hurme R., Rhen M. ( 1998). Temperature sensing in bacterial gene regulation–what it all boils down to. Mol Microbiol 30:1–6 [View Article][PubMed]
    [Google Scholar]
  16. Ishikawa T., Sabharwal D., Bröms J., Milton D. L., Sjöstedt A., Uhlin B. E., Wai S. N. ( 2012). Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun 80:575–584 [View Article][PubMed]
    [Google Scholar]
  17. Kodama T., Yamazaki C., Park K. S., Akeda Y., Iida T., Honda T. ( 2010). Transcription of Vibrio parahaemolyticus T3SS1 genes is regulated by a dual regulation system consisting of the ExsACDE regulatory cascade and H-NS. FEMS Microbiol Lett 311:10–17 [View Article][PubMed]
    [Google Scholar]
  18. Lin Z., Kumagai K., Baba K., Mekalanos J. J., Nishibuchi M. ( 1993). Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. J Bacteriol 175:3844–3855[PubMed]
    [Google Scholar]
  19. Lucchini S., Rowley G., Goldberg M. D., Hurd D., Harrison M., Hinton J. C. ( 2006). H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2:e81 [View Article][PubMed]
    [Google Scholar]
  20. Ma L., Zhang Y., Yan X., Guo L., Wang L., Qiu J., Yang R., Zhou D. ( 2012). Expression of the type VI secretion system 1 component Hcp1 is indirectly repressed by OpaR in Vibrio parahaemolyticus. ScientificWorldJournal 2012:1–7 [View Article][PubMed]
    [Google Scholar]
  21. McCarter L. L. ( 1998). OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus. J Bacteriol 180:3166–3173[PubMed]
    [Google Scholar]
  22. Newton A., Kendall M., Vugia D. J., Henao O. L., Mahon B. E. ( 2012). Increasing rates of vibriosis in the United States, 1996-2010: review of surveillance data from 2 systems. Clin Infect Dis 54:Suppl 5S391–S395 [View Article][PubMed]
    [Google Scholar]
  23. Park K. S., Ono T., Rokuda M., Jang M. H., Okada K., Iida T., Honda T. ( 2004). Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect Immun 72:6659–6665 [View Article][PubMed]
    [Google Scholar]
  24. Pieper R., Huang S. T., Robinson J. M., Clark D. J., Alami H., Parmar P. P., Perry R. D., Fleischmann R. D., Peterson S. N. ( 2009). Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology 155:498–512 [View Article][PubMed]
    [Google Scholar]
  25. Porter M. E., Dorman C. J. ( 1994). A role for H-NS in the thermo-osmotic regulation of virulence gene expression in Shigella flexneri. J Bacteriol 176:4187–4191[PubMed]
    [Google Scholar]
  26. Russell A. B., Peterson S. B., Mougous J. D. ( 2014). Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12:137–148 [View Article][PubMed]
    [Google Scholar]
  27. Salomon D., Gonzalez H., Updegraff B. L., Orth K. ( 2013). Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS ONE 8:e61086 [View Article][PubMed]
    [Google Scholar]
  28. Salomon D., Kinch L. N., Trudgian D. C., Guo X., Klimko J. A., Grishin N. V., Mirzaei H., Orth K. ( 2014). Marker for type VI secretion system effectors. Proc Natl Acad Sci U S A 111:9271–9276 [View Article][PubMed]
    [Google Scholar]
  29. Sana T. G., Hachani A., Bucior I., Soscia C., Garvis S., Termine E., Engel J., Filloux A., Bleves S. ( 2012). The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J Biol Chem 287:27095–27105 [View Article][PubMed]
    [Google Scholar]
  30. Sana T. G., Soscia C., Tonglet C. M., Garvis S., Bleves S. ( 2013). Divergent control of two type VI secretion systems by RpoN in Pseudomonas aeruginosa. PLoS ONE 8:e76030 [View Article][PubMed]
    [Google Scholar]
  31. Schwarz S., West T. E., Boyer F., Chiang W. C., Carl M. A., Hood R. D., Rohmer L., Tolker-Nielsen T., Skerrett S. J., Mougous J. D. ( 2010). Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6:e1001068 [View Article][PubMed]
    [Google Scholar]
  32. Shneider M. M., Buth S. A., Ho B. T., Basler M., Mekalanos J. J., Leiman P. G. ( 2013). PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500:350–353 [View Article][PubMed]
    [Google Scholar]
  33. Silverman J. M., Austin L. S., Hsu F., Hicks K. G., Hood R. D., Mougous J. D. ( 2011). Separate inputs modulate phosphorylation-dependent and -independent type VI secretion activation. Mol Microbiol 82:1277–1290 [View Article][PubMed]
    [Google Scholar]
  34. Stewart B. J., McCarter L. L. ( 2003). Lateral flagellar gene system of Vibrio parahaemolyticus. J Bacteriol 185:4508–4518 [View Article][PubMed]
    [Google Scholar]
  35. Tran L., Nunan L., Redman R. M., Mohney L. L., Pantoja C. R., Fitzsimmons K., Lightner D. V. ( 2013). Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ 105:45–55 [View Article][PubMed]
    [Google Scholar]
  36. Wang L., Ling Y., Jiang H., Qiu Y., Qiu J., Chen H., Yang R., Zhou D. ( 2013a). AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus. Int J Food Microbiol 160:245–251 [View Article][PubMed]
    [Google Scholar]
  37. Wang L., Zhou D., Mao P., Zhang Y., Hou J., Hu Y., Li J., Hou S., Yang R. & other authors ( 2013b). Cell density- and quorum sensing-dependent expression of type VI secretion system 2 in Vibrio parahaemolyticus. PLoS ONE 8:e73363 [View Article][PubMed]
    [Google Scholar]
  38. Whitaker W. B., Parent M. A., Boyd A., Richards G. P., Boyd E. F. ( 2012). The Vibrio parahaemolyticus ToxRS regulator is required for stress tolerance and colonization in a novel orogastric streptomycin-induced adult murine model. Infect Immun 80:1834–1845 [View Article][PubMed]
    [Google Scholar]
  39. Zhang L., Orth K. ( 2013). Virulence determinants for Vibrio parahaemolyticus infection. Curr Opin Microbiol 16:70–77 [View Article][PubMed]
    [Google Scholar]
  40. Zhang W., Xu S., Li J., Shen X., Wang Y., Yuan Z. ( 2011). Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol 193:351–363[PubMed]
    [Google Scholar]
  41. Zheng J., Shin O. S., Cameron D. E., Mekalanos J. J. ( 2010). Quorum sensing and a global regulator TsrA control expression of type VI secretion and virulence in Vibrio cholerae. Proc Natl Acad Sci U S A 107:21128–21133 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.080028-0
Loading
/content/journal/micro/10.1099/mic.0.080028-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error