1887

Abstract

The genome encodes two 1,3-α-glucan synthases. One of these 1,3-α-glucan synthase genes, , was shown to be required for the synthesis of 1,3-α-glucan in the aerial hyphae and macroconidia cell walls. 1,3-α-Glucan was found in the conidia cell wall, but was absent from the vegetative hyphae cell wall. Deletion of affected conidial development. Δ produced only 5 % as many conidia as the WT and most of the conidia produced by Δ were not viable. The upstream regulatory elements were shown to direct cell-type-specific expression of red fluorescent protein in conidia and aerial hyphae. A haemagglutinin-tagged AGS-1 was found to be expressed in aerial hyphae and conidia. The research showed that 1,3-α-glucan is an aerial hyphae and conidia cell wall component, and is required for normal conidial differentiation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080002-0
2014-08-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1618.html?itemId=/content/journal/micro/10.1099/mic.0.080002-0&mimeType=html&fmt=ahah

References

  1. Bates S., Hughes H. B., Munro C. A., Thomas W. P., MacCallum D. M., Bertram G., Atrih A., Ferguson M. A., Brown A. J.. & other authors ( 2006;). Outer chain N-glycans are required for cell wall integrity and virulence of Candida albicans. . J Biol Chem 281:, 90–98. [CrossRef][PubMed]
    [Google Scholar]
  2. Beauvais A., Bozza S., Kniemeyer O., Formosa C., Balloy V., Henry C., Roberson R. W., Dague E., Chignard M.. & other authors ( 2013;). Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. . PLoS Pathog 9:, e1003716. [CrossRef][PubMed]
    [Google Scholar]
  3. Borkovich K. A., Alex L. A., Yarden O., Freitag M., Turner G. E., Read N. D., Seiler S., Bell-Pedersen D., Paietta J.. & other authors ( 2004;). Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. . Microbiol Mol Biol Rev 68:, 1–108. [CrossRef][PubMed]
    [Google Scholar]
  4. Bowman S. M., Free S. J.. ( 2006;). The structure and synthesis of the fungal cell wall. . Bioessays 28:, 799–808. [CrossRef][PubMed]
    [Google Scholar]
  5. Bowman B. J., Draskovic M., Freitag M., Bowman E. J.. ( 2009;). Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. . Eukaryot Cell 8:, 1845–1855. [CrossRef][PubMed]
    [Google Scholar]
  6. Colot H. V., Park G., Turner G. E., Ringelberg C., Crew C. M., Litvinkova L., Weiss R. L., Borkovich K. A., Dunlap J. C.. ( 2006;). A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. . Proc Natl Acad Sci U S A 103:, 10352–10357. [CrossRef][PubMed]
    [Google Scholar]
  7. Cortés J. C., Sato M., Muñoz J., Moreno M. B., Clemente-Ramos J. A., Ramos M., Okada H., Osumi M., Durán A., Ribas J. C.. ( 2012;). Fission yeast Ags1 confers the essential septum strength needed for safe gradual cell abscission. . J Cell Biol 198:, 637–656. [CrossRef][PubMed]
    [Google Scholar]
  8. Davis R. H., DeSerres F. J.. ( 1970;). Genetic and microbiological research techniques for Neurospora crassa. . Methods Enzymol 17:, 79–143. [CrossRef]
    [Google Scholar]
  9. Fontaine T., Simenel C., Dubreucq G., Adam O., Delepierre M., Lemoine J., Vorgias C. E., Diaquin M., Latgé J. P.. ( 2000;). Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. . J Biol Chem 275:, 27594–27607.[PubMed]
    [Google Scholar]
  10. Fontaine T., Beauvais A., Loussert C., Thevenard B., Fulgsang C. C., Ohno N., Clavaud C., Prevost M. C., Latgé J. P.. ( 2010;). Cell wall alpha1–3glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. . Fungal Genet Biol 47:, 707–712. [CrossRef][PubMed]
    [Google Scholar]
  11. Free S. J.. ( 2013;). Fungal cell wall organization and biosynthesis. . Adv Genet 81:, 33–82. [CrossRef][PubMed]
    [Google Scholar]
  12. Freitag M., Selker E. U.. ( 2005;). Expression and visualization of red fluorescent protein (RFP) in Neurospora crassa.. Fungal Genet Newslett 52:, 14–17.
    [Google Scholar]
  13. Fu C., Iyer P., Herkal A., Abdullah J., Stout A., Free S. J.. ( 2011;). Identification and characterization of genes required for cell-to-cell fusion in Neurospora crassa. . Eukaryot Cell 10:, 1100–1109. [CrossRef][PubMed]
    [Google Scholar]
  14. Fujikawa T., Sakaguchi A., Nishizawa Y., Kouzai Y., Minami E., Yano S., Koga H., Meshi T., Nishimura M.. ( 2012;). Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. . PLoS Pathog 8:, e1002882. [CrossRef][PubMed]
    [Google Scholar]
  15. Futagami T., Goto M.. ( 2012;). Putative cell wall integrity sensor proteins in Aspergillus nidulans. . Commun Integr Biol 5:, 206–208. [CrossRef][PubMed]
    [Google Scholar]
  16. Futagami T., Nakao S., Kido Y., Oka T., Kajiwara Y., Takashita H., Omori T., Furukawa K., Goto M.. ( 2011;). Putative stress sensors WscA and WscB are involved in hypo-osmotic and acidic pH stress tolerance in Aspergillus nidulans. . Eukaryot Cell 10:, 1504–1515. [CrossRef][PubMed]
    [Google Scholar]
  17. Galagan J. E., Calvo S. E., Borkovich K. A., Selker E. U., Read N. D., Jaffe D., FitzHugh W., Ma L. J., Smirnov S.. & other authors ( 2003;). The genome sequence of the filamentous fungus Neurospora crassa. . Nature 422:, 859–868. [CrossRef][PubMed]
    [Google Scholar]
  18. Gastebois A., Clavaud C., Aimanianda V., Latgé J. P.. ( 2009;). Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. . Future Microbiol 4:, 583–595. [CrossRef][PubMed]
    [Google Scholar]
  19. Hochstenbach F., Klis F. M., van den Ende H., van Donselaar E., Peters P. J., Klausner R. D.. ( 1998;). Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. . Proc Natl Acad Sci U S A 95:, 9161–9166. [CrossRef][PubMed]
    [Google Scholar]
  20. Kapteyn J. C., Montijin R. C., Vink E., de la Cruz J., Llobell A., Douwes J. E., Shimoi H., Lipke P. N., Klis F. M.. ( 1996;). Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. . Glycobiology 6:, 337–345. [CrossRef][PubMed]
    [Google Scholar]
  21. Kikuchi N., Narimatsu H.. ( 2006;). Bioinformatics for comprehensive finding and analysis of glycosyltransferases. . Biochim Biophys Acta 1760:, 578–583. [CrossRef][PubMed]
    [Google Scholar]
  22. Klis F. M., Boorsma A., De Groot P. W.. ( 2006;). Cell wall construction in Saccharomyces cerevisiae. . Yeast 23:, 185–202. [CrossRef][PubMed]
    [Google Scholar]
  23. Kollár R., Reinhold B. B., Petráková E., Yeh H. J., Ashwell G., Drgonová J., Kapteyn J. C., Klis F. M., Cabib E.. ( 1997;). Architecture of the yeast cell wall. beta(1→6)-glucan interconnects mannoprotein, beta(1→)3-glucan, and chitin. . J Biol Chem 272:, 17762–17775. [CrossRef][PubMed]
    [Google Scholar]
  24. Kumar V.. ( 2011;). Identification of the sequence motif of glycoside hydrolase 13 family members. . Bioinformation 6:, 61–63. [CrossRef][PubMed]
    [Google Scholar]
  25. Latgé J. P.. ( 2007;). The cell wall: a carbohydrate armour for the fungal cell. . Mol Microbiol 66:, 279–290. [CrossRef][PubMed]
    [Google Scholar]
  26. Latgé J. P., Mouyna I., Tekaia F., Beauvais A., Debeaupuis J. P., Nierman W.. ( 2005;). Specific molecular features in the organization and biosynthesis of the cell wall of Aspergillus fumigatus. . Med Mycol 43: (Suppl 1), S15–S22. [CrossRef][PubMed]
    [Google Scholar]
  27. Lesage G., Bussey H.. ( 2006;). Cell wall assembly in Saccharomyces cerevisiae. . Microbiol Mol Biol Rev 70:, 317–343. [CrossRef][PubMed]
    [Google Scholar]
  28. Linding R., Russell R. B., Neduva V., Gibson T. J.. ( 2003;). GlobPlot: exploring protein sequences for globularity and disorder. . Nucleic Acids Res 31:, 3701–3708. [CrossRef][PubMed]
    [Google Scholar]
  29. Lu C. F., Montijn R. C., Brown J. L., Klis F., Kurjan J., Bussey H., Lipke P. N.. ( 1995;). Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. . J Cell Biol 128:, 333–340. [CrossRef][PubMed]
    [Google Scholar]
  30. Maddi A., Free S. J.. ( 2010;). α-1,6-Mannosylation of N-linked oligosaccharide present on cell wall proteins is required for their incorporation into the cell wall in the filamentous fungus Neurospora crassa. . Eukaryot Cell 9:, 1766–1775. [CrossRef][PubMed]
    [Google Scholar]
  31. Margolin B. S., Frietag M., Selker E. U.. ( 1997;). Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa.. Fungal Genet Newslett 44:, 34–36.
    [Google Scholar]
  32. Maubon D., Park S., Tanguy M., Huerre M., Schmitt C., Prévost M. C., Perlin D. S., Latgé J. P., Beauvais A.. ( 2006;). AGS3, an alpha(1–3)glucan synthase gene family member of Aspergillus fumigatus, modulates mycelium growth in the lung of experimentally infected mice. . Fungal Genet Biol 43:, 366–375. [CrossRef][PubMed]
    [Google Scholar]
  33. Pardini G., De Groot P. W., Coste A. T., Karababa M., Klis F. M., de Koster C. G., Sanglard D.. ( 2006;). The CRH family coding for cell wall glycosylphosphatidylinositol proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans. . J Biol Chem 281:, 40399–40411. [CrossRef][PubMed]
    [Google Scholar]
  34. Rappleye C. A., Engle J. T., Goldman W. E.. ( 2004;). RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence. . Mol Microbiol 53:, 153–165. [CrossRef][PubMed]
    [Google Scholar]
  35. Rappleye C. A., Eissenberg L. G., Goldman W. E.. ( 2007;). Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. . Proc Natl Acad Sci U S A 104:, 1366–1370. [CrossRef][PubMed]
    [Google Scholar]
  36. Reese A. J., Yoneda A., Breger J. A., Beauvais A., Liu H., Griffith C. L., Bose I., Kim M. J., Skau C.. & other authors ( 2007;). Loss of cell wall alpha(1-3) glucan affects Cryptococcus neoformans from ultrastructure to virulence. . Mol Microbiol 63:, 1385–1398. [CrossRef][PubMed]
    [Google Scholar]
  37. Ruiz-Herrera J., Elorza M. V., Valentín E., Sentandreu R.. ( 2006;). Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. . FEMS Yeast Res 6:, 14–29. [CrossRef][PubMed]
    [Google Scholar]
  38. Selker E. U.. ( 1999;). Gene silencing: repeats that count. . Cell 97:, 157–160. [CrossRef][PubMed]
    [Google Scholar]
  39. Sestero C. M., Scalarone G. M.. ( 2007;). Detection of the surface antigens BAD1 and alpha-(1,3)-glucan in six different strains of Blastomyces dermatitidus using monoclonal antibodies. . J Med Biol Sci 1:, 1–7.
    [Google Scholar]
  40. Springer M. L., Yanofsky C.. ( 1989;). A morphological and genetic analysis of conidiophore development in Neurospora crassa. . Genes Dev 3:, 559–571. [CrossRef][PubMed]
    [Google Scholar]
  41. Vos A., Dekker N., Distel B., Leunissen J. A., Hochstenbach F.. ( 2007;). Role of the synthase domain of Ags1p in cell wall alpha-glucan biosynthesis in fission yeast. . J Biol Chem 282:, 18969–18979. [CrossRef][PubMed]
    [Google Scholar]
  42. Yoshimi A., Sano M., Inaba A., Kokubun Y., Fujioka T., Mizutani O., Hagiwara D., Fujikawa T., Nishimura M.. & other authors ( 2013;). Functional analysis of the α-1,3-glucan synthase genes agsA and agsB in Aspergillus nidulans: agsB is the major α-1,3-glucan synthase in this fungus. . PLoS ONE 8:, e54893. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080002-0
Loading
/content/journal/micro/10.1099/mic.0.080002-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error