1887

Abstract

Although they have been studied for nearly 50 years, the source of the FMNH needed for effective biooxidation by the 2,5- and 3,6-diketocamphane monooxygenase (DKCMO) isoenzymes induced by the growth of NCIMB 10007 (ATCC 17453) on camphor remains incompletely characterized. Prior studies have focussed exclusively on enzymes present in cells harvested during late-exponential-phase growth despite considerable circumstantial evidence that the flavin reductase (FR) component of these multicomponent monooxygenases is subject to growth-phase-dependent variation. In this study, a number of alternative FMNH-generating activities, including both conventional FRs and enzymes also able to serve as ferric reductases, were isolated from camphor-grown cells, and the relative level, and hence potential contribution, of these various proteins shown to vary considerably depending on the point of harvest of NCIMB 10007 within exponential-phase growth. While two constitutive monomeric ferric reductases (molecular masses 27.0 and 28.5 kDa) were found to be the major relevant sources of FMNH during the initial stages of growth on camphor-based media, a significant subsequent contribution throughout the mid- to late-exponential phases of growth was also made by the camphor-induced homodimeric 37.0 kDa FR Fred, recently reported to serve such a role exclusively. The possible involvement of camphor-induced putidaredoxin reductase (51.0 kDa) as a contributory activity was also investigated and considered. Studies with highly purified preparations of the isofunctional DKCMOs confirmed the potential of the various reductases to function effectively as sources of the requisite FMNH to both monooxygenases at different times throughout growth on camphor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079913-0
2014-08-01
2020-06-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1783.html?itemId=/content/journal/micro/10.1099/mic.0.079913-0&mimeType=html&fmt=ahah

References

  1. Beecher J. E.. ( 1997;). Sulfoxidation by microbial monooxygenases University of Exeter; Exeter, UK:
    [Google Scholar]
  2. Beecher J. E., Willetts A. J.. ( 1998;). Biotransformation of organic sulfides. Predictive active site models for sulfoxidation catalysed by the 2,5-diketocamphane 1,2-monooxygenase and 3,6-diketocamphane 1,6-monooxygenase, enantiocomplementary enzymes from Pseudomonas putida NCIMB 10007. Tetrahedron Asymmetry9:1899–1916 [CrossRef]
    [Google Scholar]
  3. Beecher J., Grogan G., Roberts S., Willetts A.. ( 1996;). Enantioselective oxidations by the diketocamphane monooxygenase isoenzymes from Pseudomonas putida. . Biotechnol Lett18:571–576 [CrossRef]
    [Google Scholar]
  4. Bradshaw W. H., Conrad H. E., Corey E. J., Gunsalus I. C., Lednicer D.. ( 1959;). Microbial degradation of (+)-camphor. J Am Chem Soc81:5507[CrossRef]
    [Google Scholar]
  5. Campbell Z. T., Baldwin T. O.. ( 2009;). Fre is the major flavin reductase supporting bioluminescence from Vibrio harveyi luciferase in Escherichia coli . J Biol Chem284:8322–8328 [CrossRef][PubMed]
    [Google Scholar]
  6. Chaiyen P., Suadee C., Wilairat P.. ( 2001;). A novel two-protein component flavoprotein hydroxylase. Eur J Biochem268:5550–5561 [CrossRef][PubMed]
    [Google Scholar]
  7. Conrad H. E., Dubus R., Namtvedt M. J., Gunsalus I. C.. ( 1965a;). Mixed function oxidation. II. Separation and properties of the enzyme catalysing camphor lactonization. J Biol Chem240:495–503[PubMed]
    [Google Scholar]
  8. Conrad H. E., Lieb K., Gunsalus I. C.. ( 1965b;). Mixed function oxidation. III. An electron transport complex in camphor ketolactonization. J Biol Chem240:4029–4037[PubMed]
    [Google Scholar]
  9. Ellis H. R.. ( 2010;). The FMN-dependent two-component monooxygenase systems. Arch Biochem Biophys497:1–12 [CrossRef][PubMed]
    [Google Scholar]
  10. Fieschi F., Nivière V., Frier C., Décout J.-L., Fontecave M.. ( 1995;). The mechanism and substrate specificity of the NADPH : flavin oxidoreductase from Escherichia coli . J Biol Chem270:30392–30400 [CrossRef][PubMed]
    [Google Scholar]
  11. Fontecave M., Eliasson R., Reichard P.. ( 1987;). NAD(P)H : flavin oxidoreductase of Escherichia coli. A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase. J Biol Chem262:12325–12331[PubMed]
    [Google Scholar]
  12. Fontecave M., Coves J., Pierre J-L.. ( 1994;). Ferric reductases or flavin reductases?. Biometals7:3–8[CrossRef]
    [Google Scholar]
  13. Gagnon R., Grogan G., Roberts S. M., Villa R., Willetts A. J.. ( 1995;). Enzymatic Baeyer–Villiger oxidation of some bicyclo[2.2.1]heptan-2-ones using monooxygenases from Pseudomonas putida NCIMB 10007: enantioselective preparation of a precursor of azadirachtin. J Chem Soc Perkin Trans 11995:1505–1511 [CrossRef]
    [Google Scholar]
  14. Galán B., Díaz E., Prieto M. A., García J. L.. ( 2000;). Functional analysis of the small component of the 4-hydroxyphenylacetate 3-monooxygenase of Escherichia coli W: a prototype of a new flavin : NAD(P)H reductase subfamily. J Bacteriol182:627–636 [CrossRef][PubMed]
    [Google Scholar]
  15. Gaudu P., Touati D., Nivière V., Fontecave M.. ( 1994;). The NAD(P)H : flavin oxidoreductase from Escherichia coli as a source of superoxide radicals. J Biol Chem269:8182–8188[PubMed]
    [Google Scholar]
  16. Grogan G.. ( 1995;). Microbial biotransformations: oxygenation of cyclic ketones by Baeyer–Villiger monooxygenases from Pseudomonas putida NCIMB 10007 University of Exeter; Exeter, UK:
    [Google Scholar]
  17. Gunsalus I. C., Marshall V. F.. ( 1971;). Monoterpene dissimilation: chemical and genetic models. CRC Crit Rev Microbiol1:291–310 [CrossRef]
    [Google Scholar]
  18. Gunsalus I. C., Conrad H. E., Trudgill P. W.. ( 1965a;). Generation of active oxygen for mixed function oxidation. Oxidases and Related Redox Systemsvol. 1417–447 King T. E., Mason H. S., Morrish M.. New York: John Wiley and Sons;
    [Google Scholar]
  19. Gunsalus I. C., Conrad H. E., Trudgill P. W., Jacobson L. A.. ( 1965b;). Regulation of catabolic metabolism. Isr J Med Sci1:1099–1119
    [Google Scholar]
  20. Gunsalus I. C., Bertland A. U. II, Jacobson L. A.. ( 1967;). Enzyme induction and repression in anabolic and catabolic pathways. Arch Mikrobiol59:113–122 [CrossRef][PubMed]
    [Google Scholar]
  21. Hall D. A., Vander Kooi C. W., Stasik C. N., Stevens S. Y., Zuiderweg E. R., Matthews R. G.. ( 2001;). Mapping the interactions between flavodoxin and its physiological partners flavodoxin reductase and cobalamin-dependent methionine synthase. Proc Natl Acad Sci U S A98:9521–9526 [CrossRef][PubMed]
    [Google Scholar]
  22. Hartline R. A., Gunsalus I. C.. ( 1971;). Induction specificity and catabolite repression of the early enzymes in camphor degradation by Pseudomonas putida. . J Bacteriol106:468–478[PubMed]
    [Google Scholar]
  23. Hastings J. W., Potrikus C. J., Gupta S. C., Kurfürst M., Makemson J. C.. ( 1985;). Biochemistry and physiology of bioluminescent bacteria. Adv Microb Physiol26:235–291 [CrossRef][PubMed]
    [Google Scholar]
  24. Hedegaard J., Gunsalus I. C.. ( 1965;). Mixed function oxidation. IV. An induced methylene hydroxylase in camphor oxidation. J Biol Chem240:4038–4043[PubMed]
    [Google Scholar]
  25. Iwaki H., Grosse S., Bergeron H., Leisch H., Morley K., Hasegawa Y., Lau P. C.. ( 2013;). Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions. Appl Environ Microbiol79:3282–3293 [CrossRef][PubMed]
    [Google Scholar]
  26. Jones K. H., Smith R. T., Trudgill P. W.. ( 1993;). Diketocamphane enantiomer-specific ‘Baeyer–Villiger’ monooxygenases from camphor-grown Pseudomonas putida ATCC 17453. J Gen Microbiol139:797–805 [CrossRef][PubMed]
    [Google Scholar]
  27. Kadow M.. ( 2012;). Baeyer–Villiger monooxygenases involved in camphor metabolism University of Greifswald; Greifswald, Germany:
    [Google Scholar]
  28. Kadow M., Saß S., Schmidt M., Bornscheuer U. T.. ( 2011;). Recombinant expression and purification of the 2,5-diketocamphane 1,2-monooxygenase from the camphor metabolizing Pseudomonas putida strain NCIMB 10007. AMB Express1:13 [CrossRef][PubMed]
    [Google Scholar]
  29. Kadow M., Loschinski K., Saß S., Schmidt M., Bornscheuer U. T.. ( 2012;). Completing the series of BVMOs involved in camphor metabolism of Pseudomonas putida NCIMB 10007 by identification of two missing genes, their functional expression in E. coli, and biochemical characterization. Appl Microbiol Biotechnol96:419–429 [CrossRef][PubMed]
    [Google Scholar]
  30. Kadow M., Balke K., Willetts A., Bornscheuer U. T., Bäckvall J. E.. ( 2014;). Functional assembly of camphor converting two-component Baeyer-Villiger monooxygenases with a flavin reductase from E. coli. Appl Microbiol Biotechnol98:3975–3986 [CrossRef][PubMed]
    [Google Scholar]
  31. Knight E. Jr, Hardy R. W. F.. ( 1967;). Flavodoxin. Chemical and biological properties. J Biol Chem242:1370–1374[PubMed]
    [Google Scholar]
  32. Lee Y., Yeom J., Kang Y.-S., Kim J., Sung J.-S., Jeon C. O., Park W.. ( 2007;). Molecular characterization of FprB (ferredoxin-NADP+ reductase) in Pseudomonas putida KT2440. J Microbiol Biotechnol17:1504–1512[PubMed]
    [Google Scholar]
  33. Mayhew S. G., Massey V.. ( 1969;). Purification and characterization of flavodoxin from Peptostreptococcus elsdenii. . J Biol Chem244:794–802[PubMed]
    [Google Scholar]
  34. McGhie E. J.. ( 1998;). Studies on monooxygenases from the camphor degradation pathway of Pseudomonas putida NCIMB 10007 University of Exeter; Exeter, UK:
    [Google Scholar]
  35. Meighen E. A.. ( 1991;). Molecular biology of bacterial bioluminescence. Microbiol Rev55:123–142[PubMed]
    [Google Scholar]
  36. Moody M. D., Dailey H. A.. ( 1985;). Ferric iron reductase of Rhodopseudomonas sphaeroides. . J Bacteriol163:1120–1125[PubMed]
    [Google Scholar]
  37. Nivière V., Fieschi F., Décout J.-L., Fontecave M.. ( 1996;). Is the NAD(P)H : flavin oxidoreductase from Escherichia coli a member of the ferrodoxin-NADP+ reductase family?. J Biol Chem271:16656–16661 [CrossRef][PubMed]
    [Google Scholar]
  38. O’Leary N. D., O’Connor K. E., Dobson A. D.. ( 2002;). Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiol Rev26:403–417 [CrossRef][PubMed]
    [Google Scholar]
  39. Ougham H. J., Taylor D. G., Trudgill P. W.. ( 1983;). Camphor revisited: involvement of a unique monooxygenase in metabolism of 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetic acid by Pseudomonas putida . J Bacteriol153:140–152[PubMed]
    [Google Scholar]
  40. Peterson J. A., Lorence M. C., Amarneh B.. ( 1990;). Putidaredoxin reductase and putidaredoxin. Cloning, sequence determination, and heterologous expression of the proteins. J Biol Chem265:6066–6073[PubMed]
    [Google Scholar]
  41. Prieto M. A., Díaz E., García J. L.. ( 1996;). Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. J Bacteriol178:111–120[PubMed]
    [Google Scholar]
  42. Schröder I., Johnson E., de Vries S.. ( 2003;). Microbial ferric iron reductases. FEMS Microbiol Rev27:427–447 [CrossRef][PubMed]
    [Google Scholar]
  43. Shapiro A. L., Viñuela E., Maizel J. V. Jr. ( 1967;). Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun28:815–820 [CrossRef][PubMed]
    [Google Scholar]
  44. Sokatch J. R.. (editor)( 1986;). The Biology of Pseudomonas The Bacteria New York: Academic Press;
    [Google Scholar]
  45. Sucharitakul J., Chaiyen P., Entsch B., Ballou D. P.. ( 2006;). Kinetic mechanisms of the oxygenase from a two-component enzyme, p-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii. . J Biol Chem281:17044–17053 [CrossRef][PubMed]
    [Google Scholar]
  46. Taylor D. G., Trudgill P. W.. ( 1986;). Camphor revisited: studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453. J Bacteriol165:489–497[PubMed]
    [Google Scholar]
  47. Trudgill P. W.. ( 1978;). Microbial degradation of alicyclic hydrocarbons. Developments in Biodegradation of Hydrocarbons47–84 Watkinson R. J.. London: Applied Science Publishers;
    [Google Scholar]
  48. Trudgill P. W., DuBus R., Gunsalus I. C.. ( 1966;). Mixed function oxidation. VI. Purification of a tightly coupled electron transport complex in camphor lactonization. J Biol Chem241:4288–4290[PubMed]
    [Google Scholar]
  49. Unger P., Sligar S. G., Gunsalus I. C.. ( 1986;). Pseudomonas cytochrome P-450. The Bacteriavol.10557–589 Sokatch J. R.. New York: Academic Press;
    [Google Scholar]
  50. Valton J., Filisetti L., Fontecave M., Nivière V.. ( 2004;). A two-component flavin-dependent monooxygenase involved in actinorhodin biosynthesis in Streptomyces coelicolor. . J Biol Chem279:44362–44369 [CrossRef][PubMed]
    [Google Scholar]
  51. van Berkel W. J., Kamerbeek N. M., Fraaije M. W.. ( 2006;). Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol124:670–689 [CrossRef][PubMed]
    [Google Scholar]
  52. Villa R., Willetts A.. ( 1997;). Oxidations by microbial NADH plus FMN-dependent luciferases from Photobacterium phosphoreum and Vibrio fischeri. . J Mol Catal B Enzym2:193–197 [CrossRef]
    [Google Scholar]
  53. Willetts A.. ( 1997;). Structural studies and synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol15:55–62 [CrossRef][PubMed]
    [Google Scholar]
  54. Williams D. R.. ( 1991;). Metabolism of 1,8-cineole by a Rhodococcus species University of Aberystwyth; Aberystwyth, UK:
    [Google Scholar]
  55. Williams D. R., Trudgill P. W., Taylor D. G.. ( 1989;). Metabolism of 1,8-cineole by a Rhodococcus species: ring cleavage reactions. J Gen Microbiol135:1957–1967
    [Google Scholar]
  56. Yeom J., Park W.. ( 2012;). Biochemical characterization of ferredoxin-NADP(+) reductase interaction with flavodoxin in Pseudomonas putida . BMB Rep45:476–481 [CrossRef][PubMed]
    [Google Scholar]
  57. Yeom J., Jeon C. O., Madsen E. L., Park W.. ( 2009;). Ferredoxin-NADP+ reductase from Pseudomonas putida functions as a ferric reductase. J Bacteriol191:1472–1479 [CrossRef][PubMed]
    [Google Scholar]
  58. Yu C. A., Gunsalus I. C.. ( 1969;). Monoxygenases. VII. Camphor ketolactonase I and the role of three protein components. J Biol Chem244:6149–6152[PubMed]
    [Google Scholar]
  59. Zenno S., Saigo K.. ( 1994;). Identification of the genes encoding NAD(P)H-flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis . J Bacteriol176:3544–3551[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079913-0
Loading
/content/journal/micro/10.1099/mic.0.079913-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error