1887

Abstract

The operon encodes three iron–sulfur-containing proteins required for -lactate utilization and involved in biofilm formation. The transcriptional regulator LutR of the GntR family negatively controls expression. The gene, which is situated immediately upstream of , encodes an -lactate permease. Here, we show that expression can be strongly induced by -lactate and is subject to partial catabolite repression by glucose. Disruption of the gene led to a strong derepression of and no further induction by -lactate, suggesting that the LutR repressor can also negatively control expression. Electrophoretic mobility shift assay revealed a LutR-binding site located downstream of the promoter of or and containing a consensus inverted repeat sequence 5′-TCATC-N-GATGA-3′. Reporter gene analysis showed that deletion of each LutR-binding site caused a strong derepression of or . These results indicated that these two LutR-binding sites can function as operators . Moreover, deletion analysis identified a DNA segment upstream of the promoter to be important for expression. In contrast to the truncated LutR of laboratory strains 168 and PY79, the full-length LutR of the undomesticated strain RO-NN-1, and probably many other strains, can directly and negatively regulate transcription. The absence or presence of the N-terminal 21 aa of the full-length LutR, which encompass a small part of the predicted winged helix–turn–helix DNA-binding motif, may probably alter the DNA-binding specificity or affinity of LutR.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079806-0
2014-10-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2178.html?itemId=/content/journal/micro/10.1099/mic.0.079806-0&mimeType=html&fmt=ahah

References

  1. Aguilera L., Campos E., Giménez R., Badía J., Aguilar J., Baldoma L.. ( 2008;). Dual role of LldR in regulation of the lldPRD operon, involved in l-lactate metabolism in Escherichia coli. . J Bacteriol 190:, 2997–3005. [CrossRef][PubMed]
    [Google Scholar]
  2. Barbe V., Cruveiller S., Kunst F., Lenoble P., Meurice G., Sekowska A., Vallenet D., Wang T., Moszer I.. & other authors ( 2009;). From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. . Microbiology 155:, 1758–1775. [CrossRef][PubMed]
    [Google Scholar]
  3. Blatter E. E., Ross W., Tang H., Gourse R. L., Ebright R. H.. ( 1994;). Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. . Cell 78:, 889–896. [CrossRef][PubMed]
    [Google Scholar]
  4. Chai Y., Kolter R., Losick R.. ( 2009;). A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation. . J Bacteriol 191:, 2423–2430. [CrossRef][PubMed]
    [Google Scholar]
  5. Contente S., Dubnau D.. ( 1979;). Characterization of plasmid transformation in Bacillus subtilis: kinetic properties and the effect of DNA conformation. . Mol Gen Genet 167:, 251–258. [CrossRef][PubMed]
    [Google Scholar]
  6. Deng Y., Zhu Y., Wang P., Zhu L., Zheng J., Li R., Ruan L., Peng D., Sun M.. ( 2011;). Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. . J Bacteriol 193:, 2070–2071. [CrossRef][PubMed]
    [Google Scholar]
  7. Dong J. M., Taylor J. S., Latour D. J., Iuchi S., Lin E. C.. ( 1993;). Three overlapping lct genes involved in l-lactate utilization by Escherichia coli. . J Bacteriol 175:, 6671–6678.[PubMed]
    [Google Scholar]
  8. Earl A. M., Eppinger M., Fricke W. F., Rosovitz M. J., Rasko D. A., Daugherty S., Losick R., Kolter R., Ravel J.. ( 2012;). Whole-genome sequences of Bacillus subtilis and close relatives. . J Bacteriol 194:, 2378–2379. [CrossRef][PubMed]
    [Google Scholar]
  9. Exley R. M., Goodwin L., Mowe E., Shaw J., Smith H., Read R. C., Tang C. M.. ( 2005;). Neisseria meningitidis lactate permease is required for nasopharyngeal colonization. . Infect Immun 73:, 5762–5766. [CrossRef][PubMed]
    [Google Scholar]
  10. Exley R. M., Wu H., Shaw J., Schneider M. C., Smith H., Jerse A. E., Tang C. M.. ( 2007;). Lactate acquisition promotes successful colonization of the murine genital tract by Neisseria gonorrhoeae. . Infect Immun 75:, 1318–1324. [CrossRef][PubMed]
    [Google Scholar]
  11. Fedhila S., Msadek T., Nel P., Lereclus D.. ( 2002;). Distinct clpP genes control specific adaptive responses in Bacillus thuringiensis. . J Bacteriol 184:, 5554–5562. [CrossRef][PubMed]
    [Google Scholar]
  12. Gajiwala K. S., Burley S. K.. ( 2000;). Winged helix proteins. . Curr Opin Struct Biol 10:, 110–116. [CrossRef][PubMed]
    [Google Scholar]
  13. Gajiwala K. S., Chen H., Cornille F., Roques B. P., Reith W., Mach B., Burley S. K.. ( 2000;). Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. . Nature 403:, 916–921. [CrossRef][PubMed]
    [Google Scholar]
  14. Gao Y. G., Suzuki H., Itou H., Zhou Y., Tanaka Y., Wachi M., Watanabe N., Tanaka I., Yao M.. ( 2008;). Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in l-lactate and sugar utilization. . Nucleic Acids Res 36:, 7110–7123. [CrossRef][PubMed]
    [Google Scholar]
  15. Gao C., Hu C., Zheng Z., Ma C., Jiang T., Dou P., Zhang W., Che B., Wang Y.. & other authors ( 2012a;). Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa. . J Bacteriol 194:, 2687–2692. [CrossRef][PubMed]
    [Google Scholar]
  16. Gao C., Jiang T., Dou P., Ma C., Li L., Kong J., Xu P.. ( 2012b;). NAD-independent l-lactate dehydrogenase is required for l-lactate utilization in Pseudomonas stutzeri SDM. . PLoS ONE 7:, e36519. [CrossRef][PubMed]
    [Google Scholar]
  17. Georgi T., Engels V., Wendisch V. F.. ( 2008;). Regulation of l-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum. . J Bacteriol 190:, 963–971. [CrossRef][PubMed]
    [Google Scholar]
  18. Gibello A., Collins M. D., Domínguez L., Fernández-Garayzábal J. F., Richardson P. T.. ( 1999;). Cloning and analysis of the l-lactate utilization genes from Streptococcus iniae. . Appl Environ Microbiol 65:, 4346–4350.[PubMed]
    [Google Scholar]
  19. Goffin P., Lorquet F., Kleerebezem M., Hols P.. ( 2004;). Major role of NAD-dependent lactate dehydrogenases in aerobic lactate utilization in Lactobacillus plantarum during early stationary phase. . J Bacteriol 186:, 6661–6666. [CrossRef][PubMed]
    [Google Scholar]
  20. Gourse R. L., Ross W., Gaal T.. ( 2000;). UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. . Mol Microbiol 37:, 687–695. [CrossRef][PubMed]
    [Google Scholar]
  21. Guérout-Fleury A. M., Frandsen N., Stragier P.. ( 1996;). Plasmids for ectopic integration in Bacillus subtilis. . Gene 180:, 57–61. [CrossRef][PubMed]
    [Google Scholar]
  22. Guo S., Mao Z., Wu Y., Hao K., He P., He Y.. ( 2013;). Genome sequencing of Bacillus subtilis strain XF-1 with high efficiency in the suppression of Plasmodiophora brassicae. . Genome Announc 1:, e0006613. [CrossRef][PubMed]
    [Google Scholar]
  23. Herbert M. A., Hayes S., Deadman M. E., Tang C. M., Hood D. W., Moxon E. R.. ( 2002;). Signature tagged mutagenesis of Haemophilus influenzae identifies genes required for in vivo survival. . Microb Pathog 33:, 211–223. [CrossRef][PubMed]
    [Google Scholar]
  24. Higuchi R., Krummel B., Saiki R. K.. ( 1988;). A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. . Nucleic Acids Res 16:, 7351–7367. [CrossRef][PubMed]
    [Google Scholar]
  25. Hoskisson P. A., Rigali S.. ( 2009;). Chapter 1: Variation in form and function the helix-turn-helix regulators of the GntR superfamily. . Adv Appl Microbiol 69:, 1–22. [CrossRef][PubMed]
    [Google Scholar]
  26. Hueck C. J., Hillen W.. ( 1995;). Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria?. Mol Microbiol 15:, 395–401. [CrossRef][PubMed]
    [Google Scholar]
  27. Hueck C. J., Hillen W., Saier M. H. Jr. ( 1994;). Analysis of a cis-active sequence mediating catabolite repression in Gram-positive bacteria. . Res Microbiol 145:, 503–518. [CrossRef][PubMed]
    [Google Scholar]
  28. Irigül-Sönmez O., Köroğlu T. E., Öztürk B., Kovács A. T., Kuipers O. P., Yazgan-Karataş A.. ( 2014;). In Bacillus subtilis LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase. . Microbiology 160:, 243–260. [CrossRef][PubMed]
    [Google Scholar]
  29. Kemp M. B.. ( 1972;). d- and l-lactate dehydrogenases of Pseudomonas aeruginosa. . Biochem J 130:, 307–309.[PubMed]
    [Google Scholar]
  30. Lin T. H., Wei G. T., Su C. C., Shaw G. C.. ( 2012;). AdeR, a PucR-type transcription factor, activates expression of l-alanine dehydrogenase and is required for sporulation of Bacillus subtilis. . J Bacteriol 194:, 4995–5001. [CrossRef][PubMed]
    [Google Scholar]
  31. Lin T. H., Hu Y. N., Shaw G. C.. ( 2014;). Two enzymes, TilS and HprT, can form a complex to function as a transcriptional activator for the cell division protease gene ftsH in Bacillus subtilis. . J Biochem 155:, 5–16. [CrossRef][PubMed]
    [Google Scholar]
  32. Miller J. H.. ( 1972;). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  33. Nishito Y., Osana Y., Hachiya T., Popendorf K., Toyoda A., Fujiyama A., Itaya M., Sakakibara Y.. ( 2010;). Whole genome assembly of a natto production strain Bacillus subtilis natto from very short read data. . BMC Genomics 11:, 243. [CrossRef][PubMed]
    [Google Scholar]
  34. Pinchuk G. E., Rodionov D. A., Yang C., Li X., Osterman A. L., Dervyn E., Geydebrekht O. V., Reed S. B., Romine M. F.. & other authors ( 2009;). Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. . Proc Natl Acad Sci U S A 106:, 2874–2879. [CrossRef][PubMed]
    [Google Scholar]
  35. Rigali S., Derouaux A., Giannotta F., Dusart J.. ( 2002;). Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. . J Biol Chem 277:, 12507–12515. [CrossRef][PubMed]
    [Google Scholar]
  36. Ross W., Gosink K. K., Salomon J., Igarashi K., Zou C., Ishihama A., Severinov K., Gourse R. L.. ( 1993;). A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. . Science 262:, 1407–1413. [CrossRef][PubMed]
    [Google Scholar]
  37. Schroeder J. W., Simmons L. A.. ( 2013;). Complete genome sequence of Bacillus subtilis strain PY79. . Genome Announc 1:, e01085-13. [CrossRef][PubMed]
    [Google Scholar]
  38. Shine J., Dalgarno L.. ( 1974;). The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. . Proc Natl Acad Sci U S A 71:, 1342–1346. [CrossRef][PubMed]
    [Google Scholar]
  39. Stansen C., Uy D., Delaunay S., Eggeling L., Goergen J. L., Wendisch V. F.. ( 2005;). Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. . Appl Environ Microbiol 71:, 5920–5928. [CrossRef][PubMed]
    [Google Scholar]
  40. Stülke J., Hillen W.. ( 2000;). Regulation of carbon catabolism in Bacillus species. . Annu Rev Microbiol 54:, 849–880. [CrossRef][PubMed]
    [Google Scholar]
  41. Thomas M. T., Shepherd M., Poole R. K., van Vliet A. H., Kelly D. J., Pearson B. M.. ( 2011;). Two respiratory enzyme systems in Campylobacter jejuni NCTC 11168 contribute to growth on l-lactate. . Environ Microbiol 13:, 48–61. [CrossRef][PubMed]
    [Google Scholar]
  42. Weickert M. J., Chambliss G. H.. ( 1990;). Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. . Proc Natl Acad Sci U S A 87:, 6238–6242. [CrossRef][PubMed]
    [Google Scholar]
  43. Zeigler D. R.. ( 2011;). The genome sequence of Bacillus subtilis subsp. spizizenii W23: insights into speciation within the B. subtilis complex and into the history of B. subtilis genetics. . Microbiology 157:, 2033–2041. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079806-0
Loading
/content/journal/micro/10.1099/mic.0.079806-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error