1887

Abstract

is a versatile pathogen of humans and a continued public health concern due to the rise and spread of multidrug-resistant strains. As part of an ongoing investigation into the pathogenic mechanisms of this organism we previously demonstrated that an intracellular N-terminal processing protease is required for virulence. Following on from this, here we examine the role of CtpA, the lone C-terminal processing protease of . CtpA, a member of the S41 family, is a serine protease whose homologues in Gram-negative bacteria have been implicated in a range of biological functions, including pathogenesis. We demonstrate that CtpA is localized to the bacterial cell wall and expression of the gene is maximal upon exposure to conditions encountered during infection. Disruption of the gene leads to decreased heat tolerance and increased sensitivity when exposed to components of the host immune system. Finally we demonstrate that the mutant strain is attenuated for virulence in a murine model of infection. Our results represent the first characterization of a C-terminal processing protease in a pathogenic Gram-positive bacterium and show that it plays a critical role during infection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079798-0
2014-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1737.html?itemId=/content/journal/micro/10.1099/mic.0.079798-0&mimeType=html&fmt=ahah

References

  1. Bandara A. B., Sriranganathan N., Schurig G. G., Boyle S. M.. ( 2005;). Carboxyl-terminal protease regulates Brucella suis morphology in culture and persistence in macrophages and mice. . J Bacteriol 187:, 5767–5775. [CrossRef][PubMed]
    [Google Scholar]
  2. Bandara A. B., DeShazer D., Inzana T. J., Sriranganathan N., Schurig G. G., Boyle S. M.. ( 2008;). A disruption of ctpA encoding carboxy-terminal protease attenuates Burkholderia mallei and induces partial protection in CD1 mice. . Microb Pathog 45:, 207–216. [CrossRef][PubMed]
    [Google Scholar]
  3. Bäumler A. J., Kusters J. G., Stojiljkovic I., Heffron F.. ( 1994;). Salmonella typhimurium loci involved in survival within macrophages. . Infect Immun 62:, 1623–1630.[PubMed]
    [Google Scholar]
  4. Benson M. A., Lilo S., Nygaard T., Voyich J. M., Torres V. J.. ( 2012;). Rot and SaeRS cooperate to activate expression of the staphylococcal superantigen-like exoproteins. . J Bacteriol 194:, 4355–4365. [CrossRef][PubMed]
    [Google Scholar]
  5. Campo N., Rudner D. Z.. ( 2007;). SpoIVB and CtpB are both forespore signals in the activation of the sporulation transcription factor σK in Bacillus subtilis. . J Bacteriol 189:, 6021–6027. [CrossRef][PubMed]
    [Google Scholar]
  6. Carroll R. K., Robison T. M., Rivera F. E., Davenport J. E., Jonsson I. M., Florczyk D., Tarkowski A., Potempa J., Koziel J., Shaw L. N.. ( 2012;). Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus. . Microbes Infect 14:, 989–999. [CrossRef][PubMed]
    [Google Scholar]
  7. Carroll R. K., Veillard F., Gagne D. T., Lindenmuth J. M., Poreba M., Drag M., Potempa J., Shaw L. N.. ( 2013;). The Staphylococcus aureus leucine aminopeptidase is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine. . Biol Chem 394:, 791–803. [CrossRef][PubMed]
    [Google Scholar]
  8. Hara H., Yamamoto Y., Higashitani A., Suzuki H., Nishimura Y.. ( 1991;). Cloning, mapping, and characterization of the Escherichia coli prc gene, which is involved in C-terminal processing of penicillin-binding protein 3. . J Bacteriol 173:, 4799–4813.[PubMed]
    [Google Scholar]
  9. Hoge R., Laschinski M., Jaeger K. E., Wilhelm S., Rosenau F.. ( 2011;). The subcellular localization of a C-terminal processing protease in Pseudomonas aeruginosa. . FEMS Microbiol Lett 316:, 23–30. [CrossRef][PubMed]
    [Google Scholar]
  10. Jones D. T., Taylor W. R., Thornton J. M.. ( 1994;). A model recognition approach to the prediction of all-helical membrane protein structure and topology. . Biochemistry 33:, 3038–3049. [CrossRef][PubMed]
    [Google Scholar]
  11. Kemp E. H., Sammons R. L., Moir A., Sun D., Setlow P.. ( 1991;). Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis 168. . J Bacteriol 173:, 4646–4652.[PubMed]
    [Google Scholar]
  12. Kolar S. L., Nagarajan V., Oszmiana A., Rivera F. E., Miller H. K., Davenport J. E., Riordan J. T., Potempa J., Barber D. S.. & other authors ( 2011;). NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. . Microbiology 157:, 2206–2219. [CrossRef][PubMed]
    [Google Scholar]
  13. Kolar S. L., Ibarra J. A., Rivera F. E., Mootz J. M., Davenport J. E., Stevens S. M., Horswill A. R., Shaw L. N.. ( 2013;). Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. . MicrobiologyOpen 2:, 18–34. [CrossRef][PubMed]
    [Google Scholar]
  14. Kreiswirth B. N., Löfdahl S., Betley M. J., O’Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P.. ( 1983;). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. . Nature 305:, 709–712. [CrossRef][PubMed]
    [Google Scholar]
  15. Kumru O. S., Bunikis I., Sorokina I., Bergström S., Zückert W. R.. ( 2011;). Specificity and role of the Borrelia burgdorferi CtpA protease in outer membrane protein processing. . J Bacteriol 193:, 5759–5765. [CrossRef][PubMed]
    [Google Scholar]
  16. Lad S. P., Yang G., Scott D. A., Wang G., Nair P., Mathison J., Reddy V. S., Li E.. ( 2007;). Chlamydial CT441 is a PDZ domain-containing tail-specific protease that interferes with the NF-κB pathway of immune response. . J Bacteriol 189:, 6619–6625. [CrossRef][PubMed]
    [Google Scholar]
  17. Marasco R., Varcamonti M., Ricca E., Sacco M.. ( 1996;). A new Bacillus subtilis gene with homology to Escherichia coli prc. . Gene 183:, 149–152. [CrossRef][PubMed]
    [Google Scholar]
  18. Miller H. K., Carroll R. K., Burda W. N., Krute C. N., Davenport J. E., Shaw L. N.. ( 2012;). The extracytoplasmic function sigma factor σS protects against both intracellular and extracytoplasmic stresses in Staphylococcus aureus. . J Bacteriol 194:, 4342–4354. [CrossRef][PubMed]
    [Google Scholar]
  19. Noppa L., Ostberg Y., Lavrinovicha M., Bergström S.. ( 2001;). P13, an integral membrane protein of Borrelia burgdorferi, is C-terminally processed and contains surface-exposed domains. . Infect Immun 69:, 3323–3334. [CrossRef][PubMed]
    [Google Scholar]
  20. Ostberg Y., Carroll J. A., Pinne M., Krum J. G., Rosa P., Bergström S.. ( 2004;). Pleiotropic effects of inactivating a carboxyl-terminal protease, CtpA, in Borrelia burgdorferi. . J Bacteriol 186:, 2074–2084. [CrossRef][PubMed]
    [Google Scholar]
  21. Pan Q., Losick R., Rudner D. Z.. ( 2003;). A second PDZ-containing serine protease contributes to activation of the sporulation transcription factor σK in Bacillus subtilis. . J Bacteriol 185:, 6051–6056. [CrossRef][PubMed]
    [Google Scholar]
  22. Rawlings N. D., Barrett A. J., Bateman A.. ( 2010;). MEROPS: the peptidase database. . Nucleic Acids Res 38: (Database issue), D227–D233. [CrossRef][PubMed]
    [Google Scholar]
  23. Rivera F. E., Miller H. K., Kolar S. L., Stevens S. M. Jr, Shaw L. N.. ( 2012;). The impact of CodY on virulence determinant production in community-associated methicillin-resistant Staphylococcus aureus. . Proteomics 12:, 263–268. [CrossRef][PubMed]
    [Google Scholar]
  24. Seo J., Darwin A. J.. ( 2013;). The Pseudomonas aeruginosa periplasmic protease CtpA can affect systems that impact its ability to mount both acute and chronic infections. . Infect Immun 81:, 4561–4570. [CrossRef][PubMed]
    [Google Scholar]
  25. Seoane A., Sabbaj A., McMurry L. M., Levy S. B.. ( 1992;). Multiple antibiotic susceptibility associated with inactivation of the prc gene. . J Bacteriol 174:, 7844–7847.[PubMed]
    [Google Scholar]
  26. Shaw L. N., Lindholm C., Prajsnar T. K., Miller H. K., Brown M. C., Golonka E., Stewart G. C., Tarkowski A., Potempa J.. ( 2008;). Identification and characterization of σS, a novel component of the Staphylococcus aureus stress and virulence responses. . PLoS ONE 3:, e3844. [CrossRef][PubMed]
    [Google Scholar]
  27. Shestakov S. V., Anbudurai P. R., Stanbekova G. E., Gadzhiev A., Lind L. K., Pakrasi H. B.. ( 1994;). Molecular cloning and characterization of the ctpA gene encoding a carboxyl-terminal processing protease. Analysis of a spontaneous photosystem II-deficient mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. . J Biol Chem 269:, 19354–19359.[PubMed]
    [Google Scholar]
  28. Silber K. R., Keiler K. C., Sauer R. T.. ( 1992;). Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. . Proc Natl Acad Sci U S A 89:, 295–299. [CrossRef][PubMed]
    [Google Scholar]
  29. Sullivan M. A., Yasbin R. E., Young F. E.. ( 1984;). New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. . Gene 29:, 21–26. [CrossRef][PubMed]
    [Google Scholar]
  30. Wang C. Y., Wang S. W., Huang W. C., Kim K. S., Chang N. S., Wang Y. H., Wu M. H., Teng C. H.. ( 2012;). Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. . Infect Immun 80:, 3399–3409. [CrossRef][PubMed]
    [Google Scholar]
  31. Weiss A., Ibarra J. A., Paoletti J., Carroll R. K., Shaw L. N.. ( 2014;). The δ subunit of RNA polymerase guides promoter selectivity and virulence in Staphylococcus aureus. . Infect Immun 82:, 1424–1435. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079798-0
Loading
/content/journal/micro/10.1099/mic.0.079798-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error