Genome comparison of three serovar 5 pathogenic strains of : insights into an evolving swine pathogen Free

Abstract

is the causative agent of Glässer’s disease, a systemic disorder characterized by polyarthritis, polyserositis and meningitis in pigs. Although it is well known that serovar 5 is the most prevalent serovar associated with the disease, the genetic differences among strains are only now being discovered. Genomes from two serovar 5 strains, SH0165 and 29755, are already available. Here, we present the draft genome of a third serovar 5 strain, the formal serovar 5 reference strain Nagasaki. An genome subtractive analysis with full-length predicted genes of the three serovar 5 strains detected 95, 127 and 95 strain-specific genes (SSGs) for Nagasaki, SH0165 and 29755, respectively. We found that the genomic diversity within these three strains was high, in part because of a high number of mobile elements. Furthermore, a detailed analysis of large sequence polymorphisms (LSPs), encompassing regions ranging from 2 to 16 kb, revealed LSPs in virulence-related elements, such as a Toll-IL receptor, the AcrA multidrug efflux protein, an ATP-binding cassette (ABC) transporter, lipopolysaccharide-synthetizing enzymes and a tripartite ATP-independent periplasmic (TRAP) transporter. The whole-genome codon adaptation index (CAI) was also calculated and revealed values similar to other well-known bacterial pathogens. In addition, whole-genome SNP analysis indicated that nucleotide changes tended to be increased in membrane-related genes. This analysis provides further evidence that the genome of has been subjected to multiple lateral gene transfers (LGTs) and to fine-tuning of virulence factors, and has the potential for accelerated genome evolution.

Funding
This study was supported by the:
  • Spanish Ministerio de Economía y Competitividad (Award AGL2010-15232)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079483-0
2014-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1974.html?itemId=/content/journal/micro/10.1099/mic.0.079483-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  2. Angiuoli S. V., Gussman A., Klimke W., Cochrane G., Field D., Garrity G., Kodira C. D., Kyrpides N., Madupu R. & other authors ( 2008). Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS 12:137–141 [View Article][PubMed]
    [Google Scholar]
  3. Aragon V., Segales J., Oliveira S. ( 2012) Glässer's disease. Diseases of Swine, 10 edn.760–769 Zimmerman J. J., Karriker L. A., Ramirez A., Schwartz K. J., Stevenson G. W. Ames, IA: Wiley-Blackwell;
    [Google Scholar]
  4. Botzman M., Margalit H. ( 2011). Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles. Genome Biol 12:R109 [View Article][PubMed]
    [Google Scholar]
  5. Cai X., Chen H., Blackall P. J., Yin Z., Wang L., Liu Z., Jin M. ( 2005). Serological characterization of Haemophilus parasuis isolates from China. Vet Microbiol 111:231–236 [View Article][PubMed]
    [Google Scholar]
  6. Castilla K. S., de Gobbi D. D., Moreno L. Z., Paixão R., Coutinho T. A., dos Santos J. L., Moreno A. M. ( 2012). Characterization of Haemophilus parasuis isolated from Brazilian swine through serotyping, AFLP and PFGE. Res Vet Sci 92:366–371 [View Article][PubMed]
    [Google Scholar]
  7. Coffey T. J., Dowson C. G., Daniels M., Zhou J., Martin C., Spratt B. G., Musser J. M. ( 1991). Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. . Mol Microbiol 5:2255–2260 [View Article][PubMed]
    [Google Scholar]
  8. Conesa A., Götz S., García-Gómez J. M., Terol J., Talón M., Robles M. ( 2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676 [View Article][PubMed]
    [Google Scholar]
  9. Costa-Hurtado M., Ballester M., Galofré-Milà N., Darji A., Aragon V. ( 2012). VtaA8 and VtaA9 from Haemophilus parasuis delay phagocytosis by alveolar macrophages. Vet Res 43:57 [View Article][PubMed]
    [Google Scholar]
  10. Dewhirst F. E., Paster B. J., Olsen I., Fraser G. J. ( 1992). Phylogeny of 54 representative strains of species in the family Pasteurellaceae as determined by comparison of 16S rRNA sequences. J Bacteriol 174:2002–2013[PubMed]
    [Google Scholar]
  11. Gardner S. N., Hall B. G. ( 2013). When whole-genome alignments just won’t work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes. PLoS ONE 8:e81760 [View Article][PubMed]
    [Google Scholar]
  12. Gogarten J. P., Townsend J. P. ( 2005). Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687 [View Article][PubMed]
    [Google Scholar]
  13. Gordon D., Abajian C., Green P. ( 1998). Consed: a graphical tool for sequence finishing. Genome Res 8:195–202 [View Article][PubMed]
    [Google Scholar]
  14. Joseph B., Schwarz R. F., Linke B., Blom J., Becker A., Claus H., Goesmann A., Frosch M., Müller T. & other authors ( 2011). Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome. PLoS ONE 6:e18441 [View Article][PubMed]
    [Google Scholar]
  15. Käll L., Krogh A., Sonnhammer E. L. ( 2004). A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036 [View Article][PubMed]
    [Google Scholar]
  16. Kuehn J. S., Register K. B., Phillips G. J. ( 2013). Draft genome sequences for 10 isolates of the swine pathogen Haemophilus parasuis . . Genome Announc 1: e00739-13 [CrossRef]
    [Google Scholar]
  17. Leplae R., Hebrant A., Wodak S. J., Toussaint A. ( 2004). ACLAME: a CLAssification of Mobile genetic Elements. Nucleic Acids Res 32:Database issueD45–D49 [View Article][PubMed]
    [Google Scholar]
  18. Li Y., Kwok A. H., Jiang J., Zou Y., Zheng F., Chen P., Hou C., Leung F. C., Jiang P. ( 2013). Complete genome analysis of a Haemophilus parasuis serovar 12 strain from China. PLoS ONE 8:e68350 [View Article][PubMed]
    [Google Scholar]
  19. Liu B., Pop M. ( 2009). ARDB—Antibiotic Resistance Genes Database.
    [Google Scholar]
  20. Luo H., Lin Y., Gao F., Zhang C. T., Zhang R. ( 2014). DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 42:Database issueD574–D580 [View Article][PubMed]
    [Google Scholar]
  21. Lurie-Weinberger M. N., Peeri M., Gophna U. ( 2012). Contribution of lateral gene transfer to the gene repertoire of a gut-adapted methanogen. Genomics 99:52–58 [View Article][PubMed]
    [Google Scholar]
  22. Mira A., Pushker R. ( 2005). The silencing of pseudogenes. Mol Biol Evol 22:2135–2138 [View Article][PubMed]
    [Google Scholar]
  23. Mira A., Pushker R., Rodríguez-Valera F. ( 2006). The Neolithic revolution of bacterial genomes. Trends Microbiol 14:200–206 [View Article][PubMed]
    [Google Scholar]
  24. Mullins M. A., Register K. B., Bayles D. O., Loving C. L., Nicholson T. L., Brockmeier S. L., Dyer D. W., Phillips G. J. ( 2009). Characterization and comparative analysis of the genes encoding Haemophilus parasuis outer membrane proteins P2 and P5. J Bacteriol 191:5988–6002 [View Article][PubMed]
    [Google Scholar]
  25. Mullins M. A., Register K. B., Brunelle B. W., Aragon V., Galofré-Mila N., Bayles D. O., Jolley K. A. ( 2013). A curated public database for multilocus sequence typing (MLST) and analysis of Haemophilus parasuis based on an optimized typing scheme. Vet Microbiol 162:899–906 [View Article][PubMed]
    [Google Scholar]
  26. Nogueira T., Touchon M., Rocha E. P. ( 2012). Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria. PLoS ONE 7:e49403 [View Article][PubMed]
    [Google Scholar]
  27. Olvera A., Cerdà-Cuéllar M., Aragon V. ( 2006). Study of the population structure of Haemophilus parasuis by multilocus sequence typing. Microbiology 152:3683–3690 [View Article][PubMed]
    [Google Scholar]
  28. Patil P. B., Sonti R. V. ( 2004). Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice. BMC Microbiol 4:40 [View Article][PubMed]
    [Google Scholar]
  29. Pina S., Olvera A., Barceló A., Bensaid A. ( 2009). Trimeric autotransporters of Haemophilus parasuis: generation of an extensive passenger domain repertoire specific for pathogenic strains. J Bacteriol 191:576–587 [View Article][PubMed]
    [Google Scholar]
  30. Pina-Pedrero S., Olvera A., Pérez-Simó M., Bensaid A. ( 2012). Genomic and antigenic characterization of monomeric autotransporters of Haemophilus parasuis: an ongoing process of reductive evolution. Microbiology 158:436–447 [View Article][PubMed]
    [Google Scholar]
  31. Redfield R. J., Findlay W. A., Bossé J., Kroll J. S., Cameron A. D., Nash J. H. ( 2006). Evolution of competence and DNA uptake specificity in the Pasteurellaceae. . BMC Evol Biol 6:82 [View Article][PubMed]
    [Google Scholar]
  32. Rissman A. I., Mau B., Biehl B. S., Darling A. E., Glasner J. D., Perna N. T. ( 2009). Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 25:2071–2073 [View Article][PubMed]
    [Google Scholar]
  33. Schwendener S., Perreten V. ( 2011). New transposon Tn6133 in methicillin-resistant Staphylococcus aureus ST398 contains vga(E), a novel streptogramin A, pleuromutilin, and lincosamide resistance gene. Antimicrob Agents Chemother 55:4900–4904 [View Article][PubMed]
    [Google Scholar]
  34. Shao Y., He X., Harrison E. M., Tai C., Ou H. Y., Rajakumar K., Deng Z. ( 2010). mGenomeSubtractor: a web-based tool for parallel in silico subtractive hybridization analysis of multiple bacterial genomes. Nucleic Acids Res 38:Web Server issueW194–W200 [View Article][PubMed]
    [Google Scholar]
  35. Wilson D. J. ( 2012). Insights from genomics into bacterial pathogen populations. PLoS Pathog 8:e1002874 [View Article][PubMed]
    [Google Scholar]
  36. Wright F. ( 1990). The ‘effective number of codons’ used in a gene. Gene 87:23–29 [View Article][PubMed]
    [Google Scholar]
  37. Xu Z., Yue M., Zhou R., Jin Q., Fan Y., Bei W., Chen H. ( 2011). Genomic characterization of Haemophilus parasuis SH0165, a highly virulent strain of serovar 5 prevalent in China. PLoS ONE 6:e19631 [View Article][PubMed]
    [Google Scholar]
  38. Yang J., Chen L., Sun L., Yu J., Jin Q. ( 2008). VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res 36:Database issueD539–D542 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079483-0
Loading
/content/journal/micro/10.1099/mic.0.079483-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed