1887

Abstract

Collagen molecules are structural in nature and primarily found in eukaryotic, multicellular organisms. Recently, a collagen-like protein, TrpA, was identified and characterized in the marine cyanobacterium IMS 101, and it was shown to be involved in maintaining the structural integrity of the trichomes. The TrpA protein contains one glycine interruption in the otherwise perfectly uninterrupted collagenous domain. In this study, we used phylogenetic analysis to determine that the TrpA protein sequence is most closely associated with non-fibril-forming collagen proteins. Structural modelling and circular dichroism data suggest that the glycine insertion decreases the stability of TrpA compared to uninterrupted collagen sequences. Additionally, scanning electron microscopy revealed that TrpA is expressed entirely on the surface of the trichomes, with no specific pattern of localization. These data indicate that the TrpA protein is part of the outer sheath of this organism. As such, this protein may function to promote adhesion between individual . trichomes, and between this organism and heterotrophic bacteria found in the same environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079475-0
2014-10-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2148.html?itemId=/content/journal/micro/10.1099/mic.0.079475-0&mimeType=html&fmt=ahah

References

  1. Arnold K., Bordoli L., Kopp J., Schwede T.. ( 2006;). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics22:195–201 [CrossRef][PubMed]
    [Google Scholar]
  2. Bächinger H. P., Morris N. P., Lunstrum G. P., Keene D. R., Rosenbaum L. M., Compton L. A., Burgeson R. E.. ( 1990;). The relationship of the biophysical and biochemical characteristics of type VII collagen to the function of anchoring fibrils. J Biol Chem265:10095–10101[PubMed]
    [Google Scholar]
  3. Bella J., Liu J., Kramer R., Brodsky B., Berman H. M.. ( 2006;). Conformational effects of Gly-X-Gly interruptions in the collagen triple helix. J Mol Biol362:298–311 [CrossRef][PubMed]
    [Google Scholar]
  4. Bordoli L., Kiefer F., Arnold K., Benkert P., Battey J., Schwede T.. ( 2008;). Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc4:1–13 [CrossRef][PubMed]
    [Google Scholar]
  5. Boydston J. A., Chen P., Steichen C. T., Turnbough C. L. Jr. ( 2005;). Orientation within the exosporium and structural stability of the collagen-like glycoprotein BclA of Bacillus anthracis . J Bacteriol187:5310–5317 [CrossRef][PubMed]
    [Google Scholar]
  6. Brodsky B., Ramshaw J. A.. ( 1997;). The collagen triple-helix structure. Matrix Biol15:545–554 [CrossRef][PubMed]
    [Google Scholar]
  7. Burgeson R. E.. ( 1993;). Type VII collagen, anchoring fibrils, and epidermolysis bullosa. J Invest Dermatol101:252–255 [CrossRef][PubMed]
    [Google Scholar]
  8. Capone D. G., Zehr J. P., Paerl H. W., Bergman B., Carpenter E. J.. ( 1997;). Trichodesmium, a globally significant marine cyanobacterium. Science276:1221–1229 [CrossRef]
    [Google Scholar]
  9. Exposito J.-Y., Garrone R.. ( 1990;). Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. Proc Natl Acad Sci U S A87:6669–6673 [CrossRef][PubMed]
    [Google Scholar]
  10. Exposito J. Y., Cluzel C., Garrone R., Lethias C.. ( 2002;). Evolution of collagens. Anat Rec268:302–316 [CrossRef][PubMed]
    [Google Scholar]
  11. Flores E., Pernil R., Muro-Pastor A. M., Mariscal V., Maldener I., Lechno-Yossef S., Fan Q., Wolk C. P., Herrero A.. ( 2007;). Septum-localized protein required for filament integrity and diazotrophy in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol189:3884–3890 [CrossRef][PubMed]
    [Google Scholar]
  12. Geer L. Y., Marchler-Bauer A., Geer R. C., Han L., He J., He S., Liu C., Shi W., Bryant S. H.. ( 2010;). The NCBI BioSystems database. Nucleic Acids Res38:Database issueD492–D496 [CrossRef][PubMed]
    [Google Scholar]
  13. Gouy M., Guindon S., Gascuel O.. ( 2010;). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol27:221–224 [CrossRef][PubMed]
    [Google Scholar]
  14. Guex N., Peitsch M. C.. ( 1997;). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis18:2714–2723 [CrossRef][PubMed]
    [Google Scholar]
  15. Guindon S., Lethiec F., Duroux P., Gascuel O.. ( 2005;). PHYML Online a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res33:Suppl. 2W557–W559 [CrossRef][PubMed]
    [Google Scholar]
  16. Hulmes D. J.. ( 2002;). Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol137:2–10 [CrossRef][PubMed]
    [Google Scholar]
  17. Hwang E. S., Brodsky B.. ( 2012;). Folding delay and structural perturbations caused by type IV collagen natural interruptions and nearby Gly missense mutations. J Biol Chem287:4368–4375 [CrossRef][PubMed]
    [Google Scholar]
  18. Kadler K. E., Baldock C., Bella J., Boot-Handford R. P.. ( 2007;). Collagens at a glance. J Cell Sci120:1955–1958 [CrossRef][PubMed]
    [Google Scholar]
  19. Kielty C. M., Grant M. E.. ( 2003;). The collagen family: structure, assembly, and organization in the extracellular matrix. . Connective Tissue and its Heritable Disorders: Molecular, Genetic and Medical Aspects, 2nd edn.159–221 Royce P. M., Steinmann B.. Hoboken, NJ: John Wiley & sons;
    [Google Scholar]
  20. Krane D. E., Raymer M.. ( 2003;). Fundamental Concepts of Bioinformatics San Francisco, CA: Benjamin Cummings;
    [Google Scholar]
  21. Kustka A. B., Sañudo-Wilhelmy S. A., Carpenter E. J., Capone D., Burns J., Sunda W. G.. ( 2003;). Iron requirements for dinitrogen- and ammonium-supported growth in cultures of Trichodesmium (IMS101): comparison with nitrogen fixation rates and iron : carbon ratios in field populations. Limnol Oceanogr48:1869–1884 [CrossRef]
    [Google Scholar]
  22. Layton B. E., D’Souza A. J., Dampier W., Zeiger A., Sabur A., Jean-Charles J.. ( 2008;). Collagen’s triglycine repeat number and phylogeny suggest an interdomain transfer event from a Devonian or Silurian organism into Trichodesmium erythraeum . J Mol Evol66:539–554 [CrossRef][PubMed]
    [Google Scholar]
  23. Lenes J. M., Darrow B. P., Cattrall C., Heil C. A., Callahan M., Vargo G. A., Byrne R. H., Prospero J. M., Bates D. E., Fanning K. A.. ( 2001;). Iron fertilization and the Trichodesmium response on the West Florida shelf. Limnol Oceanogr46:1261–1277 [CrossRef]
    [Google Scholar]
  24. Letunic I., Bork P.. ( 2011;). Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res39:Suppl. 3W475–W478 [CrossRef][PubMed]
    [Google Scholar]
  25. Mann K., Gaill F., Timpl R.. ( 1992;). Amino-acid sequence and cell-adhesion activity of a fibril-forming collagen from the tube worm Riftia pachyptila living at deep sea hydrothermal vents. Eur J Biochem210:839–847 [CrossRef][PubMed]
    [Google Scholar]
  26. Marga F., Grandbois M., Cosgrove D. J., Baskin T. I.. ( 2005;). Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J43:181–190 [CrossRef][PubMed]
    [Google Scholar]
  27. Mariscal V., Herrero A., Nenninger A., Mullineaux C. W., Flores E.. ( 2011;). Functional dissection of the three-domain SepJ protein joining the cells in cyanobacterial trichomes. Mol Microbiol79:1077–1088 [CrossRef][PubMed]
    [Google Scholar]
  28. Mohs A., Silva T., Yoshida T., Amin R., Lukomski S., Inouye M., Brodsky B.. ( 2007;). Mechanism of stabilization of a bacterial collagen triple helix in the absence of hydroxyproline. J Biol Chem282:29757–29765 [CrossRef][PubMed]
    [Google Scholar]
  29. Pêcher J., Pires V., Djaafri I., Da Nascimento S., Fauvel-Lafève F., Legrand C., Sonnet P.. ( 2009;). Circular dichroism studies of type III collagen mimetic peptides with anti- or pro-aggregant activities on human platelets. Eur J Med Chem44:2643–2650 [CrossRef][PubMed]
    [Google Scholar]
  30. Price S., Anandan S.. ( 2013;). Characterization of a novel collagen-like protein TrpA in the cyanobacterium Trichodesmium erythraeum IMS 101. J Phycol49:758–764 [CrossRef]
    [Google Scholar]
  31. Rasmussen M., Jacobsson M., Björck L.. ( 2003;). Genome-based identification and analysis of collagen-related structural motifs in bacterial and viral proteins. J Biol Chem278:32313–32316 [CrossRef][PubMed]
    [Google Scholar]
  32. Roe K. L., Barbeau K., Mann E. L., Haygood M. G.. ( 2012;). Acquisition of iron by Trichodesmium and associated bacteria in culture. Environ Microbiol14:1681–1695 [CrossRef][PubMed]
    [Google Scholar]
  33. Roy, A., Kucukural, A. & Zhang,Y. ( 2010;) I-Tasser: a unified platform for automated protein structure and function prediction. Nat Protoc5725–738[CrossRef]
    [Google Scholar]
  34. Rubin M., Berman-Frank I., Shaked Y.. ( 2011;). Dust- and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium . Nat Geosci4:529–534 [CrossRef]
    [Google Scholar]
  35. Schwede T., Kopp J. R., Guex N., Peitsch M. C.. ( 2003;). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res31:3381–3385 [CrossRef][PubMed]
    [Google Scholar]
  36. Shoulders M. D., Raines R. T.. ( 2009;). Collagen structure and stability. Annu Rev Biochem78:929–958 [CrossRef][PubMed]
    [Google Scholar]
  37. Sicot F.-X., Exposito J.-Y., Masselot M., Garrone R., Deutsch J., Gaill F.. ( 1997;). Cloning of an annelid fibrillar-collagen gene and phylogenetic analysis of vertebrate and invertebrate collagens. Eur J Biochem246:50–58 [CrossRef][PubMed]
    [Google Scholar]
  38. Sylvestre P., Couture-Tosi E., Mock M.. ( 2002;). A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol45:169–178 [CrossRef][PubMed]
    [Google Scholar]
  39. Toal S., Amidi O., Schweitzer-Stenner R.. ( 2011;). Conformational changes of trialanine induced by direct interactions between alanine residues and alcohols in binary mixtures of water with glycerol and ethanol. J Am Chem Soc133:12728–12739 [CrossRef][PubMed]
    [Google Scholar]
  40. Whatmore A. M.. ( 2001;). Streptococcus pyogenes sclB encodes a putative hypervariable surface protein with a collagen-like repetitive structure. Microbiology147:419–429[PubMed]
    [Google Scholar]
  41. Zhang Y.. ( 2008;). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics9:40 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079475-0
Loading
/content/journal/micro/10.1099/mic.0.079475-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error