1887

Abstract

Understanding the molecular underpinnings of manganese oxidation in SS1 has been hampered by the lack of a genetic system. In this report, we describe the development of a genetic system for SS1. The antibiotic sensitivity was characterized, and a procedure for transformation with exogenous DNA via conjugation was developed and optimized, resulting in a maximum transfer frequency of 5.2×10 and a typical transfer frequency of the order of 1×10 transconjugants per donor. Genetic manipulation of SS1 was demonstrated by disrupting via chromosomal integration with a plasmid containing a R6Kγ origin of replication through homologous recombination. This resulted in resistance to 5-fluoroorotidine, which was abolished by complementation with an ectopically expressed copy of cloned into pBBR1MCS. This system is expected to be amenable to a systematic genetic analysis of SS1, including those genes responsible for manganese oxidation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079459-0
2014-11-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2396.html?itemId=/content/journal/micro/10.1099/mic.0.079459-0&mimeType=html&fmt=ahah

References

  1. Adams L. F., Ghiorse W. C.. ( 1986;). Physiology and ultrastructure of Leptothrix discophora SS-1. . Arch Microbiol 145:, 126–135. [CrossRef]
    [Google Scholar]
  2. Adams L. F., Ghiorse W. C.. ( 1987;). Characterization of extracellular Mn2+-oxidizing activity and isolation of an Mn2+-oxidizing protein from Leptothrix discophora SS-1. . J Bacteriol 169:, 1279–1285.[PubMed]
    [Google Scholar]
  3. Adelberg E. A., Pittard J.. ( 1965;). Chromosome transfer in bacterial conjugation. . Bacteriol Rev 29:, 161–172.[PubMed]
    [Google Scholar]
  4. Aminov R. I.. ( 2011;). Horizontal gene exchange in environmental microbiota. . Front Microbiol 2:, 158. [CrossRef][PubMed]
    [Google Scholar]
  5. Anderson C. R., Johnson H. A., Caputo N., Davis R. E., Torpey J. W., Tebo B. M.. ( 2009;). Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimonas manganoxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21. . Appl Environ Microbiol 75:, 4130–4138. [CrossRef][PubMed]
    [Google Scholar]
  6. Bitan-Banin G., Ortenberg R., Mevarech M.. ( 2003;). Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. . J Bacteriol 185:, 772–778. [CrossRef][PubMed]
    [Google Scholar]
  7. Brouwers G.-J.. ( 1999;). Molecular genetic aspects of microbial manganese oxidation: a geophysiological study. PhD dissertation, Leiden University;, Leiden, the Netherlands:.
    [Google Scholar]
  8. Butterfield C. N., Soldatova A. V., Lee S. W., Spiro T. G., Tebo B. M.. ( 2013;). Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase. . Proc Natl Acad Sci U S A 110:, 11731–11735. [CrossRef][PubMed]
    [Google Scholar]
  9. Chen I., Christie P. J., Dubnau D.. ( 2005;). The ins and outs of DNA transfer in bacteria. . Science 310:, 1456–1460. [CrossRef][PubMed]
    [Google Scholar]
  10. Coppi M. V., Leang C., Sandler S. J., Lovley D. R.. ( 2001;). Development of a genetic system for Geobacter sulfurreducens. . Appl Environ Microbiol 67:, 3180–3187. [CrossRef][PubMed]
    [Google Scholar]
  11. Dahlberg C., Bergström M., Hermansson M.. ( 1998;). In situ detection of high levels of horizontal plasmid transfer in marine bacterial communities. . Appl Environ Microbiol 64:, 2670–2675.[PubMed]
    [Google Scholar]
  12. Dominguez W., O’Sullivan D. J.. ( 2013;). Developing an efficient and reproducible conjugation-based gene transfer system for bifidobacteria. . Microbiology 159:, 328–338. [CrossRef][PubMed]
    [Google Scholar]
  13. El Gheriany I. A.. ( 2010;). Manganese oxidation by Leptothrix discophora SS1. PhD dissertation. Cornell University. Ithaca, NY, USA;.
    [Google Scholar]
  14. Fernandez-Astorga A., Muela A., Cisterna R., Iriberri J., Barcina I.. ( 1992;). Biotic and abiotic factors affecting plasmid transfer in Escherichia coli strains. . Appl Environ Microbiol 58:, 392–398.[PubMed]
    [Google Scholar]
  15. Francis C. A., Tebo B. M.. ( 2002;). Enzymatic manganese(II) oxidation by metabolically dormant spores of diverse Bacillus species. . Appl Environ Microbiol 68:, 874–880. [CrossRef][PubMed]
    [Google Scholar]
  16. Galvão T. C., de Lorenzo V.. ( 2005;). Adaptation of the yeast URA3 selection system to gram-negative bacteria and generation of a ΔbetCDE Pseudomonas putida strain. . Appl Environ Microbiol 71:, 883–892. [CrossRef][PubMed]
    [Google Scholar]
  17. Ghiorse W. C.. ( 1984;). Biology of iron- and manganese-depositing bacteria. . Annu Rev Microbiol 38:, 515–550. [CrossRef][PubMed]
    [Google Scholar]
  18. Hao L., Liu X., Wang H., Lin J., Pang X., Lin J.. ( 2012;). Detection and validation of a small broad-host-range plasmid pBBR1MCS-2 for use in genetic manipulation of the extremely acidophilic Acidithiobacillus sp.. J Microbiol Methods 90:, 309–314. [CrossRef][PubMed]
    [Google Scholar]
  19. Haugaard L. E., West T. P.. ( 2002;). Pyrimidine biosynthesis in Pseudomonas oleovorans. . J Appl Microbiol 92:, 517–525. [CrossRef][PubMed]
    [Google Scholar]
  20. Isaac J. H., Holloway B. W.. ( 1968;). Control of pyrimidine biosynthesis in Pseudomonas aeruginosa. J Bacteriol 96, 1732–1741. [CrossRef][PubMed]
  21. Kalogeraki V. S., Winans S. C.. ( 1997;). Suicide plasmids containing promoterless reporter genes can simultaneously disrupt and create fusions to target genes of diverse bacteria. . Gene 188:, 69–75. [CrossRef][PubMed]
    [Google Scholar]
  22. Kaniga K., Delor I., Cornelis G. R.. ( 1991;). A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. . Gene 109:, 137–141. [CrossRef][PubMed]
    [Google Scholar]
  23. Kolter R., Helsinki D. R.. ( 1979;). Regulation of initiation of DNA replication. . Annu Rev Genet 13:, 355–391. [CrossRef][PubMed]
    [Google Scholar]
  24. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M.. ( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. . Gene 166:, 175–176. [CrossRef][PubMed]
    [Google Scholar]
  25. Lampkowska J., Feld L., Monaghan A., Toomey N., Schjørring S., Jacobsen B., van der Voet H., Andersen S. R., Bolton D., Aarts H.. ( 2008;). A standardized conjugation protocol to asses antibiotic resistance transfer between lactococcal species. . Int J Food Microbiol 127:, 172–175. [CrossRef][PubMed]
    [Google Scholar]
  26. Nealson K. H., Tebo B. M., Rosson R. A.. ( 1988;). Occurrence and mechanisms of microbial oxidation of manganese. . Adv Appl Microbiol 33:, 279–318. [CrossRef]
    [Google Scholar]
  27. Ridge J. P., Lin M., Larsen E. I., Fegan M., McEwan A. G., Sly L. I.. ( 2007;). A multicopper oxidase is essential for manganese oxidation and laccase-like activity in Pedomicrobium sp. ACM 3067. . Environ Microbiol 9:, 944–953. [CrossRef][PubMed]
    [Google Scholar]
  28. Schneider J. C., Jenings A. F., Mun D. M., McGovern P. M., Chew L. C.. ( 2005;). Auxotrophic markers pyrF and proC can replace antibiotic markers on protein production plasmids in high-cell-density Pseudomonas fluorescens fermentation. . Biotechnol Prog 21:, 343–348. [CrossRef][PubMed]
    [Google Scholar]
  29. Schultheiss D., Schüler D.. ( 2003;). Development of a genetic system for Magnetospirillum gryphiswaldense. . Arch Microbiol 179:, 89–94.[PubMed]
    [Google Scholar]
  30. Siering P. L.. ( 1996;). Application of molecular approaches to investigate the role of microorganisms in manganese cycling in wetland environments. PhD dissertation. Cornell University. Ithaca, NY, USA;.
    [Google Scholar]
  31. Su J., Bao P., Bai T., Deng L., Wu H., Liu F., He J.. ( 2013;). CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. . PLoS ONE 8:, e60573. [CrossRef][PubMed]
    [Google Scholar]
  32. Szostková M., Horáková D.. ( 1998;). The effect of plasmid DNA sizes and other factors on electrotransformation of Escherichia coli JM109. . Bioelectrochem Bioenerg 47:, 319–323. [CrossRef]
    [Google Scholar]
  33. Takeno S., Sakuradani E., Murata S., Inohara-Ochiai M., Kawashima H., Ashikari T., Shimizu S.. ( 2004;). Cloning and sequencing of the ura3 and ura5 genes, and isolation and characterization of uracil auxotrophs of the fungus Mortierella alpina 1S-4. . Biosci Biotechnol Biochem 68:, 277–285. [CrossRef][PubMed]
    [Google Scholar]
  34. Tebo B. M., Ghiorse W. C., van Waasbergen L. G., Siering P. L., Caspi R.. ( 1997;). Bacterially mediated mineral formation; insights into manganese(II) oxidation from molecular genetic and biochemical studies. . Rev Mineral Geochem 35:, 225–266.
    [Google Scholar]
  35. Thia-Toong T.-L., Roovers M., Durbecq V., Gigot D., Glansdorff N., Charlier D.. ( 2002;). Genes of de novo pyrimidine biosynthesis from the hyperthermoacidophilic crenarchaeote Sulfolobus acidocaldarius: novel organization in a bipolar operon. . J Bacteriol 184:, 4430–4441. [CrossRef][PubMed]
    [Google Scholar]
  36. Willetts N., Wilkins B.. ( 1984;). Processing of plasmid DNA during bacterial conjugation. . Microbiol Rev 48:, 24–41.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079459-0
Loading
/content/journal/micro/10.1099/mic.0.079459-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error