Full text loading...
Abstract
Previously, we observed an acid-induced short-term wall extension in Flammulina velutipes apical stipes during a 15 min period after a change from a neutral to an acidic pH. This acid-induced stipe wall extension was eliminated by heating and reconstituted by a snail expansin-like protein, although we failed to isolate any endogenous expansin-like protein from F. velutipes because of its limited 1 mm fast elongation region. In this study, we report that Coprinopsis cinerea stipes possess a 9 mm fast elongation apical region, which is suitable as a model material for wall extension studies. The elongating apical stipe showed two phases of acid-induced wall extension, an initial quick short-term wall extension during the first 15 min and a slower, gradually decaying long-term wall extension over the subsequent 2 h. After heating or protein inactivation pretreatment, apical stipes lost the long-term wall extension, retaining a slower short-term wall extension, which was reconstituted by an expansin-like snail protein. In contrast, the non-elongating basal stipes showed only a weaker short-term wall extension. We propose that the long-term wall extension is a protein-mediated process involved in stipe elongation, whereas the short-term wall extension is a non-protein mediated process not involved in stipe elongation.
- Received:
- Accepted:
- Published Online:
Funding
- National Natural Science Foundation of China (Award 31170028)
- Priority Academic Development Program of Jiangsu Higher Education Institutions and the Scientific Innovation Research Program of Graduates at Nanjing Normal University (Award CXLX13-384)