1887

Abstract

Previously, we observed an acid-induced short-term wall extension in apical stipes during a 15 min period after a change from a neutral to an acidic pH. This acid-induced stipe wall extension was eliminated by heating and reconstituted by a snail expansin-like protein, although we failed to isolate any endogenous expansin-like protein from because of its limited 1 mm fast elongation region. In this study, we report that stipes possess a 9 mm fast elongation apical region, which is suitable as a model material for wall extension studies. The elongating apical stipe showed two phases of acid-induced wall extension, an initial quick short-term wall extension during the first 15 min and a slower, gradually decaying long-term wall extension over the subsequent 2 h. After heating or protein inactivation pretreatment, apical stipes lost the long-term wall extension, retaining a slower short-term wall extension, which was reconstituted by an expansin-like snail protein. In contrast, the non-elongating basal stipes showed only a weaker short-term wall extension. We propose that the long-term wall extension is a protein-mediated process involved in stipe elongation, whereas the short-term wall extension is a non-protein mediated process not involved in stipe elongation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079418-0
2014-09-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1893.html?itemId=/content/journal/micro/10.1099/mic.0.079418-0&mimeType=html&fmt=ahah

References

  1. Bartnicki-García S.. ( 1999;). Glucans, walls, and morphogenesis: on the contributions of J. G. H. Wessels to the golden decades of fungal physiology and beyond. . Fungal Genet Biol 27:, 119–127. [CrossRef][PubMed]
    [Google Scholar]
  2. Bowman S. M., Free S. J.. ( 2006;). The structure and synthesis of the fungal cell wall. . Bioessays 28:, 799–808. [CrossRef][PubMed]
    [Google Scholar]
  3. Cabib E., Arroyo J.. ( 2013;). How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. . Nat Rev Microbiol 11:, 648–655. [CrossRef][PubMed]
    [Google Scholar]
  4. Christensen M. J., Bennett R. J., Ansari H. A., Koga H., Johnson R. D., Bryan G. T., Simpson W. R., Koolaard J. P., Nickless E. M., Voisey C. R.. ( 2008;). Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. . Fungal Genet Biol 45:, 84–93. [CrossRef][PubMed]
    [Google Scholar]
  5. Cosgrove D. J.., ( 1989;). Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. . Planta 177:, 121–130. [CrossRef]
    [Google Scholar]
  6. Cosgrove D. J.. ( 1993;). Wall extensibility: its nature, measurement and relationship to plant cell growth. . New Phytol 124:, 1–23. [CrossRef][PubMed]
    [Google Scholar]
  7. Cosgrove D. J.. ( 2000;). Loosening of plant cell walls by expansins. . Nature 407:, 321–326. [CrossRef][PubMed]
    [Google Scholar]
  8. Cosgrove D. J.. ( 2005;). Growth of the plant cell wall. . Nat Rev Mol Cell Biol 6:, 850–861. [CrossRef][PubMed]
    [Google Scholar]
  9. Cosgrove D. J., Bedinger P., Durachko D. M.. ( 1997;). Group I allergens of grass pollen as cell wall-loosening agents. . Proc Natl Acad Sci U S A 94:, 6559–6564. [CrossRef][PubMed]
    [Google Scholar]
  10. Cox R. J., Niederpruem D. J.. ( 1975;). Differentiation in Coprinus lagopus. III. Expansion of excised fruit-bodies. . Arch Microbiol 105:, 257–260. [CrossRef][PubMed]
    [Google Scholar]
  11. Craig G. D., Gull K., Wood D. A.. ( 1977;). Stipe elongation in Agaricus bisporus.. J Gen Microbiol 102:, 337–347. [CrossRef]
    [Google Scholar]
  12. Eilers F. I.. ( 1974;). Growth regulation in Coprinus radiatus.. Arch Microbiol 96:, 353–364. [CrossRef]
    [Google Scholar]
  13. Fang H. J., Zhang W. M., Niu X., Liu Z. H., Lu C. M., Wei H., Yuan S.. ( 2014;). Stipe wall extension of Flammulina velutipes could be induced by an expansin-like protein from Helix aspersa.. Fungal Biol 118:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  14. Gooday G. W.. ( 1985;). Elongation of the stipe of Coprinus cinereus. . In Developmental Biology of Higher Fungi, pp. 311–332. Edited by Moore D., Casselton L. A., Wood D. A., Frankland J. C... Cambridge:: Cambridge University Press;.
    [Google Scholar]
  15. Gruen H. E.. ( 1963;). Endogenous growth regulation in carpophores of Agaricus bisporus.. Plant Physiol 38:, 652–666. [CrossRef][PubMed]
    [Google Scholar]
  16. Haindl E., Monzer J.. ( 1994;). Elongation growth and gravitropic curvature in the Flammulina velutipes (Agaricales) fruiting body. . Exp Mycol 18:, 150–158. [CrossRef][PubMed]
    [Google Scholar]
  17. Hejazi R., Amiji M.. ( 2003;). Chitosan-based gastrointestinal delivery systems. . J Control Release 89:, 151–165. [CrossRef][PubMed]
    [Google Scholar]
  18. Kamada T., Takemaru T.. ( 1977;). Stipe elongation during basidiocarp maturation in Coprinus macrorhizus: Mechanical properties of stipe cell wall. . Plant Cell Physiol 18:, 831–840.
    [Google Scholar]
  19. Kamada T., Hamada Y., Takemaru T.. ( 1982;). Autolysis in vitro of the stipe cell wall in Coprinus macrorhizus.. J Gen Microbiol 128:, 1041–1046.
    [Google Scholar]
  20. Kamada T., Fujii T., Nakagawa T., Takemaru T.. ( 1985;). Changes in (1→3)-β-glucanase activities during stipe elongation in Coprinus cinereus.. Curr Microbiol 12:, 257–259. [CrossRef]
    [Google Scholar]
  21. Kamada T., Takemaru T., Prosser J. I., Gooday G. W.. ( 1991;). Right and left handed helicity of chitin microfibrils in stipe cells in Coprinus cinereus.. Protoplasma 165:, 64–70. [CrossRef]
    [Google Scholar]
  22. Li L. C., Bedinger P. A., Volk C., Jones A. D., Cosgrove D. J.. ( 2003;). Purification and characterization of four β-expansins (Zea m 1 isoforms) from maize pollen. . Plant Physiol 132:, 2073–2085. [CrossRef][PubMed]
    [Google Scholar]
  23. Li Z. C., Durachko D. M., Cosgrove D. J.. ( 1993;). An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls. . Planta 191:, 349–356. [CrossRef]
    [Google Scholar]
  24. McQueen-Mason S. J., Durachko D. M., Cosgrove D. J.. ( 1992;). Two endogenous proteins that induce cell wall extension in plants. . Plant Cell 4:, 1425–1433. [CrossRef][PubMed]
    [Google Scholar]
  25. Mol P. C., Wessels J. G. H.. ( 1990;). Differences in wall structure between substrate hyphae and hyphae of fruit-body stipes in Agaricus bisporus.. Mycol Res 94:, 472–479. [CrossRef]
    [Google Scholar]
  26. Mol P. C., Vermeulen C. A., Wessels J. G. H.. ( 1990;). Diffuse extension of hyphae in stipes of Agaricus bisporus may be based on a unique wall structure. . Mycol Res 94:, 480–488. [CrossRef]
    [Google Scholar]
  27. Money N. P., Ravishankar J. P.. ( 2005;). Biomechanics of stipe elongation in the basidiomycete Coprinopsis cinerea.. Mycol Res 109:, 627–634. [CrossRef][PubMed]
    [Google Scholar]
  28. Ramakrishnan C., Prasad N.. ( 1972;). Rigid-body refinement and conformation of -chitin. . Biochim Biophys Acta 261:, 123–135. [CrossRef][PubMed]
    [Google Scholar]
  29. Ruiz-Herrera J., Ortiz-Castellanos L.. ( 2010;). Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. . FEMS Yeast Res 10:, 225–243. [CrossRef][PubMed]
    [Google Scholar]
  30. Sampedro J., Cosgrove D. J.. ( 2005;). The expansin superfamily. . Genome Biol 6:, 242. [CrossRef][PubMed]
    [Google Scholar]
  31. Shieh M. W., Cosgrove D. J.. ( 1998;). Expansins. . J Plant Res 111:, 149–157. [CrossRef][PubMed]
    [Google Scholar]
  32. Shioya T., Nakamura H., Ishii N., Takahashi N., Sakamoto Y., Ozaki N., Kobayashi M., Okano K., Kamada T., Muraguchi H.. ( 2013;). The Coprinopsis cinerea septin Cc.Cdc3 is involved in stipe cell elongation. . Fungal Genet Biol 58-59:, 80–90. [CrossRef][PubMed]
    [Google Scholar]
  33. Voisey C. R.. ( 2010;). Intercalary growth in hyphae of filamentous fungi. . Fungal Biol Rev 24:, 123–131. [CrossRef]
    [Google Scholar]
  34. Wang T., Park Y. B., Caporini M. A., Rosay M., Zhong L., Cosgrove D. J., Hong M.. ( 2013;). Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. . Proc Natl Acad Sci U S A 110:, 16444–16449. [CrossRef][PubMed]
    [Google Scholar]
  35. Zhao Q. X., Yuan S., Wang X., Zhang Y. L., Zhu H., Lu C. M.. ( 2008;). Restoration of mature etiolated cucumber hypocotyl cell wall susceptibility to expansin by pretreatment with fungal pectinases and EGTA in vitro. . Plant Physiol 147:, 1874–1885. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079418-0
Loading
/content/journal/micro/10.1099/mic.0.079418-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error