1887

Abstract

Studies of biotechnology applications of KT2440 have been predominantly focused on regulation and expression of the toluene degradation (TOL) pathway. Unfortunately, there is limited information on the role of other physiological factors influencing aromatic utilization. In this report, we demonstrate that KT2440 increases its siderophore secretion in response to the availability of benzyl alcohol, a model aromatic substrate. It is argued that accelerated siderophore secretion in response to aromatic substrates provides an iron ‘boost’ which is required for the effective functioning of the iron-dependent oxygenases responsible for ring opening. Direct evidence for the cardinal role of siderophores in aromatic utilization is provided by evaluation of per capita siderophore secretion and comparative growth assessments of wild-type and siderophore-negative mutant strains grown on an alternative carbon source. Accelerated siderophore secretion can be viewed as a compensatory mechanism in in the context of its inability to secrete more than one type of siderophore (pyoverdine) or to utilize heterologous siderophores. Stimulated siderophore secretion might be a key factor in successful integration and proliferation of this organism as a bio-augmentation agent for aromatic degradation. It not only facilitates efficient aromatic utilization, but also provides better opportunities for iron assimilation amongst diverse microbial communities, thereby ensuring better survival and proliferation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079277-0
2014-07-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1393.html?itemId=/content/journal/micro/10.1099/mic.0.079277-0&mimeType=html&fmt=ahah

References

  1. Bhatter P., Chatterjee A., D’souza D., Tolani M., Mistry N..( 2012;). Estimating fitness by competition assays between drug susceptible and resistant Mycobacterium tuberculosis of predominant lineages in Mumbai, India. PLoS ONE7:e33507 [CrossRef][PubMed]
    [Google Scholar]
  2. Buckling A., Harrison F., Vos M., Brockhurst M. A., Gardner A., West S. A., Griffin A..( 2007;). Siderophore-mediated cooperation and virulence in Pseudomonas aeruginosa. FEMS Microbiol Ecol62:135–141 [CrossRef][PubMed]
    [Google Scholar]
  3. Buysens S., Heungens K., Poppe J., Hofte M..( 1996;). Involvement of pyochelin and pyoverdin in suppression of pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol62:865–871[PubMed]
    [Google Scholar]
  4. Cases I., de Lorenzo V..( 2005;). Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol8:213–222[PubMed]
    [Google Scholar]
  5. Compant S., Duffy B., Nowak J., Clément C., Barka E. A..( 2005;). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol71:4951–4959 [CrossRef][PubMed]
    [Google Scholar]
  6. Dinkla I. J., Janssen D. B..( 2003;). Simultaneous growth on citrate reduces the effects of iron limitation during toluene degradation in Pseudomonas. Microb Ecol45:97–107 [CrossRef][PubMed]
    [Google Scholar]
  7. Dinkla I. J., Gabor E. M., Janssen D. B..( 2001;). Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the tol (pWWO) plasmid. Appl Environ Microbiol67:3406–3412 [CrossRef][PubMed]
    [Google Scholar]
  8. Domínguez-Cuevas P., González-Pastor J.-E., Marqués S., Ramos J.-L., de Lorenzo V..( 2006;). Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem281:11981–11991 [CrossRef][PubMed]
    [Google Scholar]
  9. Espinosa-Urgel M., Ramos J. L..( 2004;). Cell density-dependent gene contributes to efficient seed colonization by Pseudomonas putida KT2440. Appl Environ Microbiol70:5190–5198 [CrossRef][PubMed]
    [Google Scholar]
  10. Fernández-Piñar R., Cámara M., Soriano M. I., Dubern J.-F., Heeb S., Ramos J. L., Espinosa-Urgel M..( 2011;). PpoR, an orphan LuxR-family protein of Pseudomonas putida KT2440, modulates competitive fitness and surface motility independently of N-acylhomoserine lactones. Environ Microbiol Rep3:79–85 [CrossRef][PubMed]
    [Google Scholar]
  11. Gaonkar T., Nayak P. K., Garg S., Bhosle S..( 2012;). Siderophore-producing bacteria from a sand dune ecosystem and the effect of sodium benzoate on siderophore production by a potential isolate. ScientificWorldJournal2012:857249 [CrossRef][PubMed]
    [Google Scholar]
  12. Gibson D. T., Parales R. E..( 2000;). Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol11:236–243 [CrossRef][PubMed]
    [Google Scholar]
  13. Harrison F., Paul J., Massey R. C., Buckling A..( 2008;). Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J2:49–55 [CrossRef][PubMed]
    [Google Scholar]
  14. Hibbing M. E., Fuqua C., Parsek M. R., Peterson S. B..( 2010;). Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol8:15–25 [CrossRef][PubMed]
    [Google Scholar]
  15. Jin C. W., You G. Y., He Y. F., Tang C., Wu P., Zheng S. J..( 2007;). Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol144:278–285 [CrossRef][PubMed]
    [Google Scholar]
  16. Jin C. W., You G. Y., Zheng S. J..( 2008;). The iron deficiency-induced phenolics secretion plays multiple important roles in plant iron acquisition underground. Plant Signal Behav3:60–61 [CrossRef][PubMed]
    [Google Scholar]
  17. Jin C. W., Li G. X., Yu X. H., Zheng S. J..( 2010;). Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Ann Bot (Lond)105:835–841 [CrossRef][PubMed]
    [Google Scholar]
  18. Joshi H., Dave R., Venugopalan V. P..( 2009;). Competition triggers plasmid-mediated enhancement of substrate utilisation in Pseudomonas putida. PLoS ONE4:e6065 [CrossRef][PubMed]
    [Google Scholar]
  19. Lamont I. L., Beare P. A., Ochsner U., Vasil A. I., Vasil M. L..( 2002;). Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A99:7072–7077 [CrossRef][PubMed]
    [Google Scholar]
  20. Matilla M. A., Ramos J. L., Duque E., de Dios Alché J., Espinosa-Urgel M., Ramos-González M. I..( 2007;). Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Environ Microbiol9:1842–1850 [CrossRef][PubMed]
    [Google Scholar]
  21. Matthijs S., Laus G., Meyer J. M., Abbaspour-Tehrani K., Schäfer M., Budzikiewicz H., Cornelis P..( 2009;). Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. Biometals22:951–964 [CrossRef][PubMed]
    [Google Scholar]
  22. McLaughlin H., Farrell A., Quilty B..( 2006;). Bioaugmentation of activated sludge with two Pseudomonas putida strains for the degradation of 4-chlorophenol. J Environ Sci Health A Tox Hazard Subst Environ Eng41:763–777 [CrossRef][PubMed]
    [Google Scholar]
  23. Meyer J. M., Stintzi A., De Vos D., Cornelis P., Tappe R., Taraz K., Budzikiewicz H..( 1997;). Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology143:35–43 [CrossRef][PubMed]
    [Google Scholar]
  24. Molina M. A., Godoy P., Ramos-González M. I., Muñoz N., Ramos J. L., Espinosa-Urgel M..( 2005;). Role of iron and the TonB system in colonization of corn seeds and roots by Pseudomonas putida KT2440. Environ Microbiol7:443–449 [CrossRef][PubMed]
    [Google Scholar]
  25. Molina M. A., Ramos J. L., Espinosa-Urgel M..( 2006;). A two-partner secretion system is involved in seed and root colonization and iron uptake by Pseudomonas putida KT2440. Environ Microbiol8:639–647 [CrossRef][PubMed]
    [Google Scholar]
  26. Nancharaiah Y. V., Joshi H. M., Hausner M., Venugopalan V. P..( 2008;). Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. Chemosphere71:30–35 [CrossRef][PubMed]
    [Google Scholar]
  27. Neal A. L., Ahmad S., Gordon-Weeks R., Ton J..( 2012;). Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS ONE7:e35498 [CrossRef][PubMed]
    [Google Scholar]
  28. Parales R. E., Harwood C. S..( 2002;). Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol5:266–273 [CrossRef][PubMed]
    [Google Scholar]
  29. Ramos J. L., Marqués S., Timmis K. N..( 1997;). Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu Rev Microbiol51:341–373 [CrossRef][PubMed]
    [Google Scholar]
  30. Schwyn B., Neilands J. B..( 1987;). Universal chemical assay for the detection and determination of siderophores. Anal Biochem160:47–56 [CrossRef][PubMed]
    [Google Scholar]
  31. Silby M. W., Nicoll J. S., Levy S. B..( 2009;). Requirement of polyphosphate by Pseudomonas fluorescens Pf0-1 for competitive fitness and heat tolerance in laboratory media and sterile soil. Appl Environ Microbiol75:3872–3881 [CrossRef][PubMed]
    [Google Scholar]
  32. Silva-Rocha R., de Jong H., Tamames J., de Lorenzo V..( 2011;). The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene. BMC Syst Biol5:191 [CrossRef][PubMed]
    [Google Scholar]
  33. Spiers A. J., Buckling A., Rainey P. B..( 2000;). The causes of Pseudomonas diversity. Microbiology146:2345–2350[PubMed]
    [Google Scholar]
  34. Venkata Mohan S., Falkentoft C., Venkata Nancharaiah Y., Sturm B. S., Wattiau P., Wilderer P. A., Wuertz S., Hausner M..( 2009;). Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid. Bioresour Technol100:1746–1753 [CrossRef][PubMed]
    [Google Scholar]
  35. Visca P., Imperi F., Lamont I. L..( 2007;). Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol15:22–30 [CrossRef][PubMed]
    [Google Scholar]
  36. Wandersman C., Delepelaire P..( 2004;). Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol58:611–647 [CrossRef][PubMed]
    [Google Scholar]
  37. Yang C. H., Crowley D. E..( 2000;). Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol66:345–351 [CrossRef][PubMed]
    [Google Scholar]
  38. Zwietering M. H., Jongenburger I., Rombouts F. M., van ’t Riet K..( 1990;). Modeling of the bacterial growth curve. Appl Environ Microbiol56:1875–1881[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079277-0
Loading
/content/journal/micro/10.1099/mic.0.079277-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error