1887

Abstract

The metabolic adaptation of strong mutator strains was studied to better understand the link between the strong mutator phenotype and virulence. Analysis of the growth curves of isogenic strains of , which were previously grown in M63 glucose media, revealed that the exponential phase of growth was reached earlier in an M63 acetate medium with strong mutator strains (mutated in or in ) than with normomutator strains (<0.05). Complemented strains confirmed the direct role of the strong mutator phenotype in this faster metabolic adaptation to the assimilation of acetate. In a mixed cell population, proliferation of strong mutators over normomutators was observed when the carbon source was switched from glucose to acetate. These results add to the sparse body of knowledge about strong mutators and highlight the selective advantage conferred by the strong mutator phenotype to adapt to a switch of carbon source in the environment. This work may provide clinically useful information given that there is a high prevalence of strong mutators among pathogenic strains of and that acetate is the principal short chain fatty acid of the human terminal ileum and colon where infection is localized.

Funding
This study was supported by the:
  • Rennes Métropole
  • Conseil Régional de Bretagne
  • Langlois Foundation
  • FEDER
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079244-0
2014-10-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2264.html?itemId=/content/journal/micro/10.1099/mic.0.079244-0&mimeType=html&fmt=ahah

References

  1. Baquero M. R., Nilsson A. I., Turrientes M. del C., Sandvang D., Galán J. C., Martínez J. L., Frimodt-Møller N., Baquero F., Andersson D. I. ( 2004). Polymorphic mutation frequencies in Escherichia coli: emergence of weak mutators in clinical isolates. J Bacteriol 186:5538–5542 [View Article][PubMed]
    [Google Scholar]
  2. Chan C. H., Garrity J., Crosby H. A., Escalante-Semerena J. C. ( 2011). In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate. Mol Microbiol 80:168–183[PubMed] [CrossRef]
    [Google Scholar]
  3. Darwin K. H., Miller V. L. ( 1999). Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin Microbiol Rev 12:405–428[PubMed]
    [Google Scholar]
  4. Fang F. C., Libby S. J., Castor M. E., Fung A. M. ( 2005). Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice. Infect Immun 73:2547–2549 [View Article][PubMed]
    [Google Scholar]
  5. Feliziani S., Luján A. M., Moyano A. J., Sola C., Bocco J. L., Montanaro P., Canigia L. F., Argaraña C. E., Smania A. M. ( 2010). Mucoidy, quorum sensing, mismatch repair and antibiotic resistance in Pseudomonas aeruginosa from cystic fibrosis chronic airways infections. PLoS ONE 5:e12669 [View Article][PubMed]
    [Google Scholar]
  6. Herron M. D., Doebeli M. ( 2013). Parallel evolutionary dynamics of adaptive diversification in Escherichia coli . PLoS Biol 11:e1001490 [View Article][PubMed]
    [Google Scholar]
  7. Hoboth C., Hoffmann R., Eichner A., Henke C., Schmoldt S., Imhof A., Heesemann J., Hogardt M. ( 2009). Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 200:118–130 [View Article][PubMed]
    [Google Scholar]
  8. Jolivet-Gougeon A., Kovacs B., Le Gall-David S., Le Bars H., Bousarghin L., Bonnaure-Mallet M., Lobel B., Guillé F., Soussy C. J., Tenke P. ( 2011). Bacterial hypermutation: clinical implications. J Med Microbiol 60:563–573 [View Article][PubMed]
    [Google Scholar]
  9. Le Bars H., Le Gall-David S., Renoux V. M., Bonnaure-Mallet M., Jolivet-Gougeon A., Bousarghin L. ( 2012a). Impact of a mutator phenotype on motility and cell adherence in Salmonella Heidelberg. Vet Microbiol 159:99–106 [View Article][PubMed]
    [Google Scholar]
  10. Le Bars H., Bousarghin L., Bonnaure-Mallet M., Jolivet-Gougeon A., Barloy-Hubler F. ( 2012b). Complete genome sequence of the strong mutator Salmonella enterica subsp. enterica serotype Heidelberg strain B182. J Bacteriol 194:3537–3538 [View Article][PubMed]
    [Google Scholar]
  11. Le Bars H., Bousarghin L., Bonnaure-Mallet M., Jolivet-Gougeon A. ( 2013). Role of a short tandem leucine/arginine repeat in strong mutator phenotype acquisition in a clinical isolate of Salmonella Typhimurium. FEMS Microbiol Lett 338:101–106 [View Article][PubMed]
    [Google Scholar]
  12. Le Gall S., Desbordes L., Gracieux P., Saffroy S., Bousarghin L., Bonnaure-Mallet M., Jolivet-Gougeon A. ( 2009). Distribution of mutation frequencies among Salmonella enterica isolates from animal and human sources and genetic characterization of a Salmonella Heidelberg hypermutator. Vet Microbiol 137:306–312 [View Article][PubMed]
    [Google Scholar]
  13. LeClerc J. E., Li B., Payne W. L., Cebula T. A. ( 1996). High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211 [View Article][PubMed]
    [Google Scholar]
  14. Maciá M. D., Blanquer D., Togores B., Sauleda J., Pérez J. L., Oliver A. ( 2005). Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 49:3382–3386 [View Article][PubMed]
    [Google Scholar]
  15. Mao E. F., Lane L., Lee J., Miller J. H. ( 1997). Proliferation of mutators in A cell population. J Bacteriol 179:417–422[PubMed]
    [Google Scholar]
  16. Matic I., Radman M., Taddei F., Picard B., Doit C., Bingen E., Denamur E., Elion J. ( 1997). Highly variable mutation rates in commensal and pathogenic Escherichia coli . Science 277:1833–1834 [View Article][PubMed]
    [Google Scholar]
  17. Mena A., Smith E. E., Burns J. L., Speert D. P., Moskowitz S. M., Perez J. L., Oliver A. ( 2008). Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol 190:7910–7917 [View Article][PubMed]
    [Google Scholar]
  18. Oh M. K., Rohlin L., Kao K. C., Liao J. C. ( 2002). Global expression profiling of acetate-grown Escherichia coli . J Biol Chem 277:13175–13183 [View Article][PubMed]
    [Google Scholar]
  19. Oliver A., Mena A. ( 2010). Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. Clin Microbiol Infect 16:798–808 [View Article][PubMed]
    [Google Scholar]
  20. Oliver A., Cantón R., Campo P., Baquero F., Blázquez J. ( 2000). High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1253 [View Article][PubMed]
    [Google Scholar]
  21. Pardee A. B., Jacob F., Monod J. ( 1958). [The role of the inducible alleles and the constrtutive alleles in the synthesis of beta-galactosidase in zygotes of Escherichia coli]. C R Hebd Seances Acad Sci 246:3125–3128[PubMed]
    [Google Scholar]
  22. Philippe N., Alcaraz J. P., Coursange E., Geiselmann J., Schneider D. ( 2004). Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51:246–255 [View Article][PubMed]
    [Google Scholar]
  23. Rainey P. B., Travisano M. ( 1998). Adaptive radiation in a heterogeneous environment. Nature 394:69–72 [View Article][PubMed]
    [Google Scholar]
  24. Spencer C. C., Bertrand M., Travisano M., Doebeli M. ( 2007). Adaptive diversification in genes that regulate resource use in Escherichia coli . PLoS Genet 3:e15 [View Article][PubMed]
    [Google Scholar]
  25. Taddei F., Radman M., Maynard-Smith J., Toupance B., Gouyon P. H., Godelle B. ( 1997). Role of mutator alleles in adaptive evolution. Nature 387:700–702 [View Article][PubMed]
    [Google Scholar]
  26. Vaillant V., de Valk H., Baron E., Ancelle T., Colin P., Delmas M. C., Dufour B., Pouillot R., Le Strat Y. & other authors ( 2005). Foodborne infections in France. Foodborne Pathog Dis 2:221–232 [View Article][PubMed]
    [Google Scholar]
  27. Wolfe A. J. ( 2005). The acetate switch. Microbiol Mol Biol Rev 69:12–50 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.079244-0
Loading
/content/journal/micro/10.1099/mic.0.079244-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error