1887

Abstract

P128 is an anti-staphylococcal protein consisting of the phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of spp., including meticillin-resistant (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth . One of the mutants tested was found to show reduced virulence in animal models of septicaemia suggesting loss of fitness as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other β-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the gene of three P128-resistant mutants showed either a truncation or deletion in , suggesting that improper cross-bridge formation in could be causing resistance to P128. Using glutathione -transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079111-0
2014-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2157.html?itemId=/content/journal/micro/10.1099/mic.0.079111-0&mimeType=html&fmt=ahah

References

  1. Andersson D. I., Hughes D. ( 2010). Antibiotic resistance and its cost: is it possible to reverse resistance?. Nat Rev Microbiol 8:260–271[PubMed]
    [Google Scholar]
  2. Bardelang P., Vankemmelbeke M., Zhang Y., Jarvis H., Antoniadou E., Rochette S., Thomas N. R., Penfold C. N., James R. ( 2009). Design of a polypeptide FRET substrate that facilitates study of the antimicrobial protease lysostaphin. Biochem J 418:615–624 [View Article][PubMed]
    [Google Scholar]
  3. Becker S. C., Dong S., Baker J. R., Foster-Frey J., Pritchard D. G., Donovan D. M. ( 2009). LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett 294:52–60 [View Article][PubMed]
    [Google Scholar]
  4. Billot-Klein D., Gutmann L., Bryant D., Bell D., Van Heijenoort J., Grewal J., Shlaes D. M. ( 1996). Peptidoglycan synthesis and structure in Staphylococcus haemolyticus expressing increasing levels of resistance to glycopeptide antibiotics. J Bacteriol 178:4696–4703[PubMed]
    [Google Scholar]
  5. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254[PubMed]
    [Google Scholar]
  6. Climo M. W., Ehlert K., Archer G. L. ( 2001). Mechanism and suppression of lysostaphin resistance in oxacillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1431–1437 [View Article][PubMed]
    [Google Scholar]
  7. David M. Z., Daum R. S. ( 2010). Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23:616–687 [View Article][PubMed]
    [Google Scholar]
  8. de Jonge B. L., Sidow T., Chang Y. S., Labischinski H., Berger-Bachi B., Gage D. A., Tomasz A. ( 1993). Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA locus. J Bacteriol 175:2779–2782[PubMed]
    [Google Scholar]
  9. DeHart H. P., Heath H. E., Heath L. S., LeBlanc P. A., Sloan G. L. ( 1995). The lysostaphin endopeptidase resistance gene (epr) specifies modification of peptidoglycan cross bridges in Staphylococcus simulans and Staphylococcus aureus. Appl Environ Microbiol 61:1475–1479[PubMed]
    [Google Scholar]
  10. Ehlert K., Schröder W., Labischinski H. ( 1997). Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation. J Bacteriol 179:7573–7576[PubMed]
    [Google Scholar]
  11. Ehlert K., Tschierske M., Mori C., Schröder W., Berger-Bächi B. ( 2000). Site-specific serine incorporation by Lif and Epr into positions 3 and 5 of the staphylococcal peptidoglycan interpeptide bridge. J Bacteriol 182:2635–2638 [View Article][PubMed]
    [Google Scholar]
  12. Fenton M., Ross P., McAuliffe O., O’Mahony J., Coffey A. ( 2010). Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 1:9–16 [View Article][PubMed]
    [Google Scholar]
  13. George S. E., Chikkamadaiah R., Durgaiah M., Joshi A. A., Thankappan U. P., Madhusudhana S. N., Sriram B. ( 2012). Biochemical characterization and evaluation of cytotoxicity of antistaphylococcal chimeric protein P128. BMC Res Notes 5:280 [View Article][PubMed]
    [Google Scholar]
  14. Gilmer D. B., Schmitz J. E., Euler C. W., Fischetti V. A. ( 2013). Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 57:2743–2750 [View Article][PubMed]
    [Google Scholar]
  15. Gründling A., Missiakas D. M., Schneewind O. ( 2006). Staphylococcus aureus mutants with increased lysostaphin resistance. J Bacteriol 188:6286–6297 [View Article][PubMed]
    [Google Scholar]
  16. Gu B., Kelesidis T., Tsiodras S., Hindler J., Humphries R. M. ( 2013). The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 68:4–11 [View Article][PubMed]
    [Google Scholar]
  17. Heath H. E., Heath L. S., Nitterauer J. D., Rose K. E., Sloan G. L. ( 1989). Plasmid-encoded lysostaphin endopeptidase resistance of Staphylococcus simulans biovar staphylolyticus. Biochem Biophys Res Commun 160:1106–1109 [View Article][PubMed]
    [Google Scholar]
  18. Kelley P. G., Gao W., Ward P. B., Howden B. P. ( 2011). Daptomycin non-susceptibility in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous-VISA (hVISA): implications for therapy after vancomycin treatment failure. J Antimicrob Chemother 66:1057–1060 [View Article][PubMed]
    [Google Scholar]
  19. Kusuma C., Jadanova A., Chanturiya T., Kokai-Kun J. F. ( 2007). Lysostaphin-resistant variants of Staphylococcus aureus demonstrate reduced fitness in vitro and in vivo. Antimicrob Agents Chemother 51:475–482 [View Article][PubMed]
    [Google Scholar]
  20. Labischinski H., Ehlert K., Berger-Bächi B. ( 1998). The targeting of factors necessary for expression of methicillin resistance in staphylococci. J Antimicrob Chemother 41:581–584 [View Article][PubMed]
    [Google Scholar]
  21. Lepeuple A. S., Van Gemert E., Chapot-Chartier M. P. ( 1998). Analysis of the bacteriolytic enzymes of the autolytic lactococcus lactis subsp. cremoris strain AM2 by renaturing polyacrylamide gel electrophoresis: identification of a prophage-encoded enzyme. Appl Environ Microbiol 64:4142–4148[PubMed]
    [Google Scholar]
  22. Loeffler J. M., Nelson D., Fischetti V. A. ( 2001). Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294:2170–2172 [View Article][PubMed]
    [Google Scholar]
  23. Mei J. M., Nourbakhsh F., Ford C. W., Holden D. W. ( 1997). Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol 26:399–407 [View Article][PubMed]
    [Google Scholar]
  24. Nakagawa H., Arisaka F., Ishii S. ( 1985). Isolation and characterization of the bacteriophage T4 tail-associated lysozyme. J Virol 54:460–466[PubMed]
    [Google Scholar]
  25. Narasimhaiah M. H., Asrani J. Y., Palaniswamy S. M., Bhat J., George S. E., Srinivasan R., Vipra A., Desai S. N., Junjappa R. P. & other authors ( 2013). Therapeutic potential of staphylococcal bacteriophages for nasal decolonization of Staphylococcus aureus in mice. Adv Microbiol 3:52–60 [View Article]
    [Google Scholar]
  26. Natoli S., Fontana C., Favaro M., Bergamini A., Testore G. P., Minelli S., Bossa M. C., Casapulla M., Broglio G. & other authors ( 2009). Characterization of coagulase-negative staphylococcal isolates from blood with reduced susceptibility to glycopeptides and therapeutic options. BMC Infect Dis 9:83 [View Article][PubMed]
    [Google Scholar]
  27. Paul V. D., Rajagopalan S. S., Sundarrajan S., George S. E., Asrani J. Y., Pillai R., Chikkamadaiah R., Durgaiah M., Sriram B., Padmanabhan S. ( 2011). A novel bacteriophage tail-associated muralytic enzyme (TAME) from Phage K and its development into a potent antistaphylococcal protein. BMC Microbiol 11:226 [View Article][PubMed]
    [Google Scholar]
  28. Prasad B., Salunkhe S. S., Padmanabhan S. ( 2010). Novel self-cleavage activity of staphylokinase fusion proteins: an interesting finding and its possible applications. Protein Expr Purif 69:191–197 [View Article][PubMed]
    [Google Scholar]
  29. Rodríguez-Rubio L., Martínez B., Donovan D. M., Rodríguez A., García P. ( 2013a). Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol 39:427–434 [View Article][PubMed]
    [Google Scholar]
  30. Rodríguez-Rubio L., Martínez B., Rodríguez A., Donovan D. M., Götz F., García P. ( 2013b). The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance. PLoS ONE 8:e64671 [View Article][PubMed]
    [Google Scholar]
  31. Rohrer S., Berger-Bächi B. ( 2003). FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and β-lactam resistance in Gram-positive cocci. Antimicrob Agents Chemother 47:837–846 [View Article][PubMed]
    [Google Scholar]
  32. Rossi P., Aramini J. M., Xiao R., Chen C. X., Nwosu C., Owens L. A., Maglaqui M., Nair R., Fischer M. & other authors ( 2009). Structural elucidation of the Cys-His-Glu-Asn proteolytic relay in the secreted CHAP domain enzyme from the human pathogen Staphylococcus saprophyticus. Proteins 74:515–519 [View Article][PubMed]
    [Google Scholar]
  33. Saravanan S. R., Paul V. D., George S., Sundarrajan S., Kumar N., Hebbur M., Kumar N., Veena A., Maheshwari U. & other authors ( 2013). Properties and mutation studies of a bacteriophage-derived chimeric recombinant staphylolytic protein P128: comparison to recombinant lysostaphin. Bacteriophage 3:e26564 [View Article][PubMed]
    [Google Scholar]
  34. Schmelcher M., Powell A. M., Becker S. C., Camp M. J., Donovan D. M. ( 2012). Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol 78:2297–2305 [View Article][PubMed]
    [Google Scholar]
  35. Schuch R., Nelson D., Fischetti V. A. ( 2002). A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418:884–889 [View Article][PubMed]
    [Google Scholar]
  36. Shopsin B., Gomez M., Montgomery S. O., Smith D. H., Waddington M., Dodge D. E., Bost D. A., Riehman M., Naidich S., Kreiswirth B. N. ( 1999). Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37:3556–3563[PubMed]
    [Google Scholar]
  37. Simmonds R. S., Pearson L., Kennedy R. C., Tagg J. R. ( 1996). Mode of action of a lysostaphin-like bacteriolytic agent produced by Streptococcus zooepidemicus 4881. Appl Environ Microbiol 62:4536–4541[PubMed]
    [Google Scholar]
  38. Strandén A. M., Ehlert K., Labischinski H., Berger-Bächi B. ( 1997). Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J Bacteriol 179:9–16[PubMed]
    [Google Scholar]
  39. Sugai M., Fujiwara T., Ohta K., Komatsuzawa H., Ohara M., Suginaka H. ( 1997). epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus. J Bacteriol 179:4311–4318[PubMed]
    [Google Scholar]
  40. Szweda P., Schielmann M., Kotlowski R., Gorczyca G., Zalewska M., Milewski S. ( 2012). Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol 96:1157–1174 [View Article][PubMed]
    [Google Scholar]
  41. Thumm G., Götz F. ( 1997). Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol Microbiol 23:1251–1265 [View Article][PubMed]
    [Google Scholar]
  42. Vipra A. A., Desai S. N., Roy P., Patil R., Raj J. M., Narasimhaswamy N., Paul V. D., Chikkamadaiah R., Sriram B. ( 2012). Antistaphylococcal activity of bacteriophage derived chimeric protein P128. BMC Microbiol 12:41 [View Article][PubMed]
    [Google Scholar]
  43. Warfield R., Bardelang P., Saunders H., Chan W. C., Penfold C., James R., Thomas N. R. ( 2006). Internally quenched peptides for the study of lysostaphin: an antimicrobial protease that kills Staphylococcus aureus. Org Biomol Chem 4:3626–3638 [View Article][PubMed]
    [Google Scholar]
  44. Zou Y., Hou C. ( 2010). Systematic analysis of an amidase domain CHAP in 12 Staphylococcus aureus genomes and 44 staphylococcal phage genomes. Comput Biol Chem 34:251–257 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079111-0
Loading
/content/journal/micro/10.1099/mic.0.079111-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error