1887

Abstract

P128 is an anti-staphylococcal protein consisting of the phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of spp., including meticillin-resistant (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth . One of the mutants tested was found to show reduced virulence in animal models of septicaemia suggesting loss of fitness as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other β-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the gene of three P128-resistant mutants showed either a truncation or deletion in , suggesting that improper cross-bridge formation in could be causing resistance to P128. Using glutathione -transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079111-0
2014-10-01
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/10/2157.html?itemId=/content/journal/micro/10.1099/mic.0.079111-0&mimeType=html&fmt=ahah

References

  1. Andersson D. I., Hughes D..( 2010;). Antibiotic resistance and its cost: is it possible to reverse resistance?. Nat Rev Microbiol8:260–271[PubMed]
    [Google Scholar]
  2. Bardelang P., Vankemmelbeke M., Zhang Y., Jarvis H., Antoniadou E., Rochette S., Thomas N. R., Penfold C. N., James R..( 2009;). Design of a polypeptide FRET substrate that facilitates study of the antimicrobial protease lysostaphin. Biochem J418:615–624 [CrossRef][PubMed]
    [Google Scholar]
  3. Becker S. C., Dong S., Baker J. R., Foster-Frey J., Pritchard D. G., Donovan D. M..( 2009;). LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett294:52–60 [CrossRef][PubMed]
    [Google Scholar]
  4. Billot-Klein D., Gutmann L., Bryant D., Bell D., Van Heijenoort J., Grewal J., Shlaes D. M..( 1996;). Peptidoglycan synthesis and structure in Staphylococcus haemolyticus expressing increasing levels of resistance to glycopeptide antibiotics. J Bacteriol178:4696–4703[PubMed]
    [Google Scholar]
  5. Bradford M. M..( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254[PubMed]
    [Google Scholar]
  6. Climo M. W., Ehlert K., Archer G. L..( 2001;). Mechanism and suppression of lysostaphin resistance in oxacillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother45:1431–1437 [CrossRef][PubMed]
    [Google Scholar]
  7. David M. Z., Daum R. S..( 2010;). Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev23:616–687 [CrossRef][PubMed]
    [Google Scholar]
  8. de Jonge B. L., Sidow T., Chang Y. S., Labischinski H., Berger-Bachi B., Gage D. A., Tomasz A..( 1993;). Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA locus. J Bacteriol175:2779–2782[PubMed]
    [Google Scholar]
  9. DeHart H. P., Heath H. E., Heath L. S., LeBlanc P. A., Sloan G. L..( 1995;). The lysostaphin endopeptidase resistance gene (epr) specifies modification of peptidoglycan cross bridges in Staphylococcus simulans and Staphylococcus aureus. Appl Environ Microbiol61:1475–1479[PubMed]
    [Google Scholar]
  10. Ehlert K., Schröder W., Labischinski H..( 1997;). Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation. J Bacteriol179:7573–7576[PubMed]
    [Google Scholar]
  11. Ehlert K., Tschierske M., Mori C., Schröder W., Berger-Bächi B..( 2000;). Site-specific serine incorporation by Lif and Epr into positions 3 and 5 of the staphylococcal peptidoglycan interpeptide bridge. J Bacteriol182:2635–2638 [CrossRef][PubMed]
    [Google Scholar]
  12. Fenton M., Ross P., McAuliffe O., O’Mahony J., Coffey A..( 2010;). Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs1:9–16 [CrossRef][PubMed]
    [Google Scholar]
  13. George S. E., Chikkamadaiah R., Durgaiah M., Joshi A. A., Thankappan U. P., Madhusudhana S. N., Sriram B..( 2012;). Biochemical characterization and evaluation of cytotoxicity of antistaphylococcal chimeric protein P128. BMC Res Notes5:280 [CrossRef][PubMed]
    [Google Scholar]
  14. Gilmer D. B., Schmitz J. E., Euler C. W., Fischetti V. A..( 2013;). Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother57:2743–2750 [CrossRef][PubMed]
    [Google Scholar]
  15. Gründling A., Missiakas D. M., Schneewind O..( 2006;). Staphylococcus aureus mutants with increased lysostaphin resistance. J Bacteriol188:6286–6297 [CrossRef][PubMed]
    [Google Scholar]
  16. Gu B., Kelesidis T., Tsiodras S., Hindler J., Humphries R. M..( 2013;). The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother68:4–11 [CrossRef][PubMed]
    [Google Scholar]
  17. Heath H. E., Heath L. S., Nitterauer J. D., Rose K. E., Sloan G. L..( 1989;). Plasmid-encoded lysostaphin endopeptidase resistance of Staphylococcus simulans biovar staphylolyticus. Biochem Biophys Res Commun160:1106–1109 [CrossRef][PubMed]
    [Google Scholar]
  18. Kelley P. G., Gao W., Ward P. B., Howden B. P..( 2011;). Daptomycin non-susceptibility in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous-VISA (hVISA): implications for therapy after vancomycin treatment failure. J Antimicrob Chemother66:1057–1060 [CrossRef][PubMed]
    [Google Scholar]
  19. Kusuma C., Jadanova A., Chanturiya T., Kokai-Kun J. F..( 2007;). Lysostaphin-resistant variants of Staphylococcus aureus demonstrate reduced fitness in vitro and in vivo. Antimicrob Agents Chemother51:475–482 [CrossRef][PubMed]
    [Google Scholar]
  20. Labischinski H., Ehlert K., Berger-Bächi B..( 1998;). The targeting of factors necessary for expression of methicillin resistance in staphylococci. J Antimicrob Chemother41:581–584 [CrossRef][PubMed]
    [Google Scholar]
  21. Lepeuple A. S., Van Gemert E., Chapot-Chartier M. P..( 1998;). Analysis of the bacteriolytic enzymes of the autolytic lactococcus lactis subsp. cremoris strain AM2 by renaturing polyacrylamide gel electrophoresis: identification of a prophage-encoded enzyme. Appl Environ Microbiol64:4142–4148[PubMed]
    [Google Scholar]
  22. Loeffler J. M., Nelson D., Fischetti V. A..( 2001;). Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science294:2170–2172 [CrossRef][PubMed]
    [Google Scholar]
  23. Mei J. M., Nourbakhsh F., Ford C. W., Holden D. W..( 1997;). Identification of Staphylococcus aureus virulence genes in a murine model of bacteraemia using signature-tagged mutagenesis. Mol Microbiol26:399–407 [CrossRef][PubMed]
    [Google Scholar]
  24. Nakagawa H., Arisaka F., Ishii S..( 1985;). Isolation and characterization of the bacteriophage T4 tail-associated lysozyme. J Virol54:460–466[PubMed]
    [Google Scholar]
  25. Narasimhaiah M. H., Asrani J. Y., Palaniswamy S. M., Bhat J., George S. E., Srinivasan R., Vipra A., Desai S. N., Junjappa R. P..& other authors ( 2013;). Therapeutic potential of staphylococcal bacteriophages for nasal decolonization of Staphylococcus aureus in mice. Adv Microbiol3:52–60 [CrossRef]
    [Google Scholar]
  26. Natoli S., Fontana C., Favaro M., Bergamini A., Testore G. P., Minelli S., Bossa M. C., Casapulla M., Broglio G..& other authors ( 2009;). Characterization of coagulase-negative staphylococcal isolates from blood with reduced susceptibility to glycopeptides and therapeutic options. BMC Infect Dis9:83 [CrossRef][PubMed]
    [Google Scholar]
  27. Paul V. D., Rajagopalan S. S., Sundarrajan S., George S. E., Asrani J. Y., Pillai R., Chikkamadaiah R., Durgaiah M., Sriram B., Padmanabhan S..( 2011;). A novel bacteriophage tail-associated muralytic enzyme (TAME) from Phage K and its development into a potent antistaphylococcal protein. BMC Microbiol11:226 [CrossRef][PubMed]
    [Google Scholar]
  28. Prasad B., Salunkhe S. S., Padmanabhan S..( 2010;). Novel self-cleavage activity of staphylokinase fusion proteins: an interesting finding and its possible applications. Protein Expr Purif69:191–197 [CrossRef][PubMed]
    [Google Scholar]
  29. Rodríguez-Rubio L., Martínez B., Donovan D. M., Rodríguez A., García P..( 2013a;). Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol39:427–434 [CrossRef][PubMed]
    [Google Scholar]
  30. Rodríguez-Rubio L., Martínez B., Rodríguez A., Donovan D. M., Götz F., García P..( 2013b;). The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance. PLoS ONE8:e64671 [CrossRef][PubMed]
    [Google Scholar]
  31. Rohrer S., Berger-Bächi B..( 2003;). FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and β-lactam resistance in Gram-positive cocci. Antimicrob Agents Chemother47:837–846 [CrossRef][PubMed]
    [Google Scholar]
  32. Rossi P., Aramini J. M., Xiao R., Chen C. X., Nwosu C., Owens L. A., Maglaqui M., Nair R., Fischer M..& other authors ( 2009;). Structural elucidation of the Cys-His-Glu-Asn proteolytic relay in the secreted CHAP domain enzyme from the human pathogen Staphylococcus saprophyticus. Proteins74:515–519 [CrossRef][PubMed]
    [Google Scholar]
  33. Saravanan S. R., Paul V. D., George S., Sundarrajan S., Kumar N., Hebbur M., Kumar N., Veena A., Maheshwari U..& other authors ( 2013;). Properties and mutation studies of a bacteriophage-derived chimeric recombinant staphylolytic protein P128: comparison to recombinant lysostaphin. Bacteriophage3:e26564 [CrossRef][PubMed]
    [Google Scholar]
  34. Schmelcher M., Powell A. M., Becker S. C., Camp M. J., Donovan D. M..( 2012;). Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol78:2297–2305 [CrossRef][PubMed]
    [Google Scholar]
  35. Schuch R., Nelson D., Fischetti V. A..( 2002;). A bacteriolytic agent that detects and kills Bacillus anthracis. Nature418:884–889 [CrossRef][PubMed]
    [Google Scholar]
  36. Shopsin B., Gomez M., Montgomery S. O., Smith D. H., Waddington M., Dodge D. E., Bost D. A., Riehman M., Naidich S., Kreiswirth B. N..( 1999;). Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol37:3556–3563[PubMed]
    [Google Scholar]
  37. Simmonds R. S., Pearson L., Kennedy R. C., Tagg J. R..( 1996;). Mode of action of a lysostaphin-like bacteriolytic agent produced by Streptococcus zooepidemicus 4881. Appl Environ Microbiol62:4536–4541[PubMed]
    [Google Scholar]
  38. Strandén A. M., Ehlert K., Labischinski H., Berger-Bächi B..( 1997;). Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J Bacteriol179:9–16[PubMed]
    [Google Scholar]
  39. Sugai M., Fujiwara T., Ohta K., Komatsuzawa H., Ohara M., Suginaka H..( 1997;). epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus. J Bacteriol179:4311–4318[PubMed]
    [Google Scholar]
  40. Szweda P., Schielmann M., Kotlowski R., Gorczyca G., Zalewska M., Milewski S..( 2012;). Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol96:1157–1174 [CrossRef][PubMed]
    [Google Scholar]
  41. Thumm G., Götz F..( 1997;). Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol Microbiol23:1251–1265 [CrossRef][PubMed]
    [Google Scholar]
  42. Vipra A. A., Desai S. N., Roy P., Patil R., Raj J. M., Narasimhaswamy N., Paul V. D., Chikkamadaiah R., Sriram B..( 2012;). Antistaphylococcal activity of bacteriophage derived chimeric protein P128. BMC Microbiol12:41 [CrossRef][PubMed]
    [Google Scholar]
  43. Warfield R., Bardelang P., Saunders H., Chan W. C., Penfold C., James R., Thomas N. R..( 2006;). Internally quenched peptides for the study of lysostaphin: an antimicrobial protease that kills Staphylococcus aureus. Org Biomol Chem4:3626–3638 [CrossRef][PubMed]
    [Google Scholar]
  44. Zou Y., Hou C..( 2010;). Systematic analysis of an amidase domain CHAP in 12 Staphylococcus aureus genomes and 44 staphylococcal phage genomes. Comput Biol Chem34:251–257 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079111-0
Loading
/content/journal/micro/10.1099/mic.0.079111-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error