1887

Abstract

Transcription in all living organisms is accomplished by highly conserved multi-subunit RNA polymerases (RNAPs). Our understanding of the functioning of the active centre of RNAPs has transformed recently with the finding that a conserved flexible domain near the active centre, the trigger loop (TL), participates directly in the catalysis of RNA synthesis and serves as a major determinant for fidelity of transcription. It also appears that the TL is involved in the unique ability of RNAPs to exchange catalytic activities of the active centre. In this phenomenon the TL is replaced by a transcription factor which changes the amino acid content and, as a result, the catalytic properties of the active centre. The existence of a number of transcription factors that act through substitution of the TL suggests that the RNAP has several different active centres to choose from in response to external or internal signals.

A video of this Prize Lecture, presented at the Society for General Microbiology Annual Conference 2014, can be viewed via this link: https://www.youtube.com/watch?v=79Z7iXVEPo4

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.079020-0
2014-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1316.html?itemId=/content/journal/micro/10.1099/mic.0.079020-0&mimeType=html&fmt=ahah

References

  1. Adelman K., Yuzenkova J., La Porta A., Zenkin N., Lee J., Lis J. T., Borukhov S., Wang M. D., Severinov K.. ( 2004;). Molecular mechanism of transcription inhibition by peptide antibiotic Microcin J25. . Mol Cell 14:, 753–762. [CrossRef][PubMed]
    [Google Scholar]
  2. Artsimovitch I., Svetlov V., Nemetski S. M., Epshtein V., Cardozo T., Nudler E.. ( 2011;). Tagetitoxin inhibits RNA polymerase through trapping of the trigger loop. . J Biol Chem 286:, 40395–40400. [CrossRef][PubMed]
    [Google Scholar]
  3. Borukhov S., Sagitov V., Goldfarb A.. ( 1993;). Transcript cleavage factors from E. coli. . Cell 72:, 459–466. [CrossRef][PubMed]
    [Google Scholar]
  4. Cheung A. C., Cramer P.. ( 2011;). Structural basis of RNA polymerase II backtracking, arrest and reactivation. . Nature 471:, 249–253. [CrossRef][PubMed]
    [Google Scholar]
  5. Dutta D., Shatalin K., Epshtein V., Gottesman M. E., Nudler E.. ( 2011;). Linking RNA polymerase backtracking to genome instability in E. coli. . Cell 146:, 533–543. [CrossRef][PubMed]
    [Google Scholar]
  6. Engel C., Sainsbury S., Cheung A. C., Kostrewa D., Cramer P.. ( 2013;). RNA polymerase I structure and transcription regulation. . Nature 502:, 650–655. [CrossRef][PubMed]
    [Google Scholar]
  7. Kettenberger H., Armache K. J., Cramer P.. ( 2004;). Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. . Mol Cell 16:, 955–965. [CrossRef][PubMed]
    [Google Scholar]
  8. Kireeva M. L., Nedialkov Y. A., Cremona G. H., Purtov Y. A., Lubkowska L., Malagon F., Burton Z. F., Strathern J. N., Kashlev M.. ( 2008;). Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. . Mol Cell 30:, 557–566. [CrossRef][PubMed]
    [Google Scholar]
  9. Laptenko O., Lee J., Lomakin I., Borukhov S.. ( 2003;). Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. . EMBO J 22:, 6322–6334. [CrossRef][PubMed]
    [Google Scholar]
  10. Laptenko O., Kim S. S., Lee J., Starodubtseva M., Cava F., Berenguer J., Kong X. P., Borukhov S.. ( 2006;). pH-dependent conformational switch activates the inhibitor of transcription elongation. . EMBO J 25:, 2131–2141. [CrossRef][PubMed]
    [Google Scholar]
  11. Nielsen S., Zenkin N.. ( 2013;). Transcript assisted phosphodiester bond hydrolysis by eukaryotic RNA polymerase II. . Transcription 4:, 209–212. [CrossRef][PubMed]
    [Google Scholar]
  12. Paul B. J., Barker M. M., Ross W., Schneider D. A., Webb C., Foster J. W., Gourse R. L.. ( 2004;). DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. . Cell 118:, 311–322. [CrossRef][PubMed]
    [Google Scholar]
  13. Roghanian M., Yuzenkova Y., Zenkin N.. ( 2011;). Controlled interplay between trigger loop and Gre factor in the RNA polymerase active centre. . Nucleic Acids Res 39:, 4352–4359. [CrossRef][PubMed]
    [Google Scholar]
  14. Sosunov V., Sosunova E., Mustaev A., Bass I., Nikiforov V., Goldfarb A.. ( 2003;). Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. . EMBO J 22:, 2234–2244. [CrossRef][PubMed]
    [Google Scholar]
  15. Sosunova E., Sosunov V., Kozlov M., Nikiforov V., Goldfarb A., Mustaev A.. ( 2003;). Donation of catalytic residues to RNA polymerase active center by transcription factor Gre. . Proc Natl Acad Sci U S A 100:, 15469–15474. [CrossRef][PubMed]
    [Google Scholar]
  16. Steitz T. A.. ( 1998;). A mechanism for all polymerases. . Nature 391:, 231–232. [CrossRef][PubMed]
    [Google Scholar]
  17. Steitz T. A., Steitz J. A.. ( 1993;). A general two-metal-ion mechanism for catalytic RNA. . Proc Natl Acad Sci U S A 90:, 6498–6502. [CrossRef][PubMed]
    [Google Scholar]
  18. Tagami S., Sekine S., Kumarevel T., Hino N., Murayama Y., Kamegamori S., Yamamoto M., Sakamoto K., Yokoyama S.. ( 2010;). Crystal structure of bacterial RNA polymerase bound with a transcription inhibitor protein. . Nature 468:, 978–982. [CrossRef][PubMed]
    [Google Scholar]
  19. Temiakov D., Zenkin N., Vassylyeva M. N., Perederina A., Tahirov T. H., Kashkina E., Savkina M., Zorov S., Nikiforov V.. & other authors ( 2005;). Structural basis of transcription inhibition by antibiotic streptolydigin. . Mol Cell 19:, 655–666. [CrossRef][PubMed]
    [Google Scholar]
  20. Vassylyev D. G., Svetlov V., Vassylyeva M. N., Perederina A., Igarashi N., Matsugaki N., Wakatsuki S., Artsimovitch I.. ( 2005;). Structural basis for transcription inhibition by tagetitoxin. . Nat Struct Mol Biol 12:, 1086–1093. [CrossRef][PubMed]
    [Google Scholar]
  21. Vassylyev D. G., Vassylyeva M. N., Zhang J., Palangat M., Artsimovitch I., Landick R.. ( 2007;). Structural basis for substrate loading in bacterial RNA polymerase. . Nature 448:, 163–168. [CrossRef][PubMed]
    [Google Scholar]
  22. Wang D., Bushnell D. A., Westover K. D., Kaplan C. D., Kornberg R. D.. ( 2006;). Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. . Cell 127:, 941–954. [CrossRef][PubMed]
    [Google Scholar]
  23. Yuzenkova Y., Zenkin N.. ( 2010;). Central role of the RNA polymerase trigger loop in intrinsic RNA hydrolysis. . Proc Natl Acad Sci U S A 107:, 10878–10883. [CrossRef][PubMed]
    [Google Scholar]
  24. Yuzenkova Y., Bochkareva A., Tadigotla V. R., Roghanian M., Zorov S., Severinov K., Zenkin N.. ( 2010;). Stepwise mechanism for transcription fidelity. . BMC Biol 8:, 54. [CrossRef][PubMed]
    [Google Scholar]
  25. Yuzenkova Y., Roghanian M., Zenkin N.. ( 2012;). Multiple active centers of multi-subunit RNA polymerases. . Transcription 3:, 115–118. [CrossRef][PubMed]
    [Google Scholar]
  26. Yuzenkova Y., Roghanian M., Bochkareva A., Zenkin N.. ( 2013;). Tagetitoxin inhibits transcription by stabilizing pre-translocated state of the elongation complex. . Nucleic Acids Res 41:, 9257–9265. [CrossRef][PubMed]
    [Google Scholar]
  27. Zaychikov E., Martin E., Denissova L., Kozlov M., Markovtsov V., Kashlev M., Heumann H., Nikiforov V., Goldfarb A., Mustaev A.. ( 1996;). Mapping of catalytic residues in the RNA polymerase active center. . Science 273:, 107–109. [CrossRef][PubMed]
    [Google Scholar]
  28. Zenkin N., Yuzenkova Y., Severinov K.. ( 2006;). Transcript-assisted transcriptional proofreading. . Science 313:, 518–520. [CrossRef][PubMed]
    [Google Scholar]
  29. Zhang G., Campbell E. A., Minakhin L., Richter C., Severinov K., Darst S. A.. ( 1999;). Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. . Cell 98:, 811–824. [CrossRef][PubMed]
    [Google Scholar]
  30. Zhang J., Palangat M., Landick R.. ( 2010;). Role of the RNA polymerase trigger loop in catalysis and pausing. . Nat Struct Mol Biol 17:, 99–104. [CrossRef][PubMed]
    [Google Scholar]
  31. Zhang Y., Mooney R. A., Grass J. A., Sivaramakrishnan P., Herman C., Landick R., Wang J. D.. ( 2014;). DksA guards elongating RNA polymerase against ribosome-stalling-induced arrest. . Mol Cell 53:, 766–778. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.079020-0
Loading
/content/journal/micro/10.1099/mic.0.079020-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error