1887

Abstract

,-Transpeptidases (Ldts) catalyse the formation of 3–3 cross-links in peptidoglycans (PGs); however, the role of these enzymes in cell envelope physiology is not well understood. Mycobacterial PG contains a higher percentage of 3–3 cross-links (~30–80 %) than the PG in most other bacteria, suggesting that they are particularly important to mycobacterial cell wall biology. The genomes of and encode multiple Ldt genes, but it is not clear if they are redundant. We compared the sequences of the Ldt proteins from 18 mycobacterial genomes and found that they can be grouped into six classes. We then constructed strains lacking single or multiple Ldt genes to determine the physiological consequence of the loss of these enzymes. We report that of the single mutants, only one, Δ (, class 5), displayed an increased susceptibility to imipenem – a carbapenem antibiotic that inhibits the Ldt enzymes. The invariant cysteine in the active site of LdtC was required for function, consistent with its role as an Ldt. A triple mutant missing and both of the class 2 genes displayed hypersusceptibility to antibiotics, lysozyme and -methionine, and had an altered cellular morphology. These data demonstrated that the distinct classes of mycobacterial Ldts may reflect different, non-redundant functions and that the class 5 Ldt was peculiar in that its loss, alone and with the class 2 proteins, had the most profound effect on phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078980-0
2014-08-01
2020-10-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1795.html?itemId=/content/journal/micro/10.1099/mic.0.078980-0&mimeType=html&fmt=ahah

References

  1. Asubel F., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. ( 1987;). Current Protocols in Molecular Biology New York: Greene/Wiley Interscience;
    [Google Scholar]
  2. Azuma I., Thomas D. W., Adam A., Ghuysen J. M., Bonaly R., Petit J. F., Lederer E.. ( 1970;). Occurrence of N-glycolylmuramic acid in bacterial cell walls. A preliminary survey. Biochim Biophys Acta208:444–451 [CrossRef][PubMed]
    [Google Scholar]
  3. Biarrotte-Sorin S., Hugonnet J. E., Delfosse V., Mainardi J. L., Gutmann L., Arthur M., Mayer C.. ( 2006;). Crystal structure of a novel beta-lactam-insensitive peptidoglycan transpeptidase. J Mol Biol359:533–538 [CrossRef][PubMed]
    [Google Scholar]
  4. Böth D., Steiner E. M., Stadler D., Lindqvist Y., Schnell R., Schneider G.. ( 2013;). Structure of LdtMt2, an l,d-transpeptidase from Mycobacterium tuberculosis . Acta Crystallogr D Biol Crystallogr69:432–441 [CrossRef][PubMed]
    [Google Scholar]
  5. Brennan P. J.. ( 1989;). Structure of mycobacteria: recent developments in defining cell wall carbohydrates and proteins. Rev Infect Dis11:Suppl 2S420–S430 [CrossRef][PubMed]
    [Google Scholar]
  6. Cava F., de Pedro M. A., Lam H., Davis B. M., Waldor M. K.. ( 2011;). Distinct pathways for modification of the bacterial cell wall by non-canonical d-amino acids. EMBO J30:3442–3453 [CrossRef][PubMed]
    [Google Scholar]
  7. Cordillot M., Dubée V., Triboulet S., Dubost L., Marie A., Hugonnet J. E., Arthur M., Mainardi J. L.. ( 2013;). In vitro cross-linking of Mycobacterium tuberculosis peptidoglycan by l,d-transpeptidases and inactivation of these enzymes by carbapenems. Antimicrob Agents Chemother57:5940–5945 [CrossRef][PubMed]
    [Google Scholar]
  8. Correale S., Ruggiero A., Capparelli R., Pedone E., Berisio R.. ( 2013;). Structures of free and inhibited forms of the l,d-transpeptidase LdtMt1 from Mycobacterium tuberculosis . Acta Crystallogr D Biol Crystallogr69:1697–1706 [CrossRef][PubMed]
    [Google Scholar]
  9. Dramsi S., Magnet S., Davison S., Arthur M.. ( 2008;). Covalent attachment of proteins to peptidoglycan. FEMS Microbiol Rev32:307–320 [CrossRef][PubMed]
    [Google Scholar]
  10. Erdemli S. B., Gupta R., Bishai W. R., Lamichhane G., Amzel L. M., Bianchet M. A.. ( 2012;). Targeting the cell wall of Mycobacterium tuberculosis: structure and mechanism of l,d-transpeptidase 2. Structure20:2103–2115 [CrossRef][PubMed]
    [Google Scholar]
  11. Gupta R., Lavollay M., Mainardi J. L., Arthur M., Bishai W. R., Lamichhane G.. ( 2010;). The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat Med16:466–469 [CrossRef][PubMed]
    [Google Scholar]
  12. Hett E. C., Rubin E. J.. ( 2008;). Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev72:126–156 [CrossRef][PubMed]
    [Google Scholar]
  13. Hirschfield G. R., McNeil M., Brennan P. J.. ( 1990;). Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis . J Bacteriol172:1005–1013[PubMed]
    [Google Scholar]
  14. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. ( 1989;). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59 [CrossRef][PubMed]
    [Google Scholar]
  15. Horcajo P., de Pedro M. A., Cava F.. ( 2012;). Peptidoglycan plasticity in bacteria: stress-induced peptidoglycan editing by noncanonical d-amino acids. Microb Drug Resist18:306–313 [CrossRef][PubMed]
    [Google Scholar]
  16. Kay B. K., Williamson M. P., Sudol M.. ( 2000;). The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J14:231–241[PubMed]
    [Google Scholar]
  17. Kim H. S., Kim J., Im H. N., Yoon J. Y., An D. R., Yoon H. J., Kim J. Y., Min H. K., Kim S. J.. & other authors ( 2013;). Structural basis for the inhibition of Mycobacterium tuberculosis l,d-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains. Acta Crystallogr D Biol Crystallogr69:420–431 [CrossRef][PubMed]
    [Google Scholar]
  18. Kumar P., Arora K., Lloyd J. R., Lee I. Y., Nair V., Fischer E., Boshoff H. I., Barry C. E. III. ( 2012;). Meropenem inhibits d,d-carboxypeptidase activity in Mycobacterium tuberculosis . Mol Microbiol86:367–381 [CrossRef][PubMed]
    [Google Scholar]
  19. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  20. Lavollay M., Arthur M., Fourgeaud M., Dubost L., Marie A., Veziris N., Blanot D., Gutmann L., Mainardi J. L.. ( 2008;). The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by l,d-transpeptidation. J Bacteriol190:4360–4366 [CrossRef][PubMed]
    [Google Scholar]
  21. Lavollay M., Fourgeaud M., Herrmann J. L., Dubost L., Marie A., Gutmann L., Arthur M., Mainardi J. L.. ( 2011;). The peptidoglycan of Mycobacterium abscessus is predominantly cross-linked by l,d-transpeptidases. J Bacteriol193:778–782 [CrossRef][PubMed]
    [Google Scholar]
  22. Lederer E.. ( 1971;). The mycobacterial cell wall. Pure Appl Chem25:135–165 [CrossRef][PubMed]
    [Google Scholar]
  23. Li W. J., Li D. F., Hu Y. L., Zhang X. E., Bi L. J., Wang D. C.. ( 2013;). Crystal structure of l,d-transpeptidase LdtMt2 in complex with meropenem reveals the mechanism of carbapenem against Mycobacterium tuberculosis . Cell Res23:728–731 [CrossRef][PubMed]
    [Google Scholar]
  24. Lu J. Z., Fujiwara T., Komatsuzawa H., Sugai M., Sakon J.. ( 2006;). Cell wall-targeting domain of glycylglycine endopeptidase distinguishes among peptidoglycan cross-bridges. J Biol Chem281:549–558 [CrossRef][PubMed]
    [Google Scholar]
  25. Magnet S., Bellais S., Dubost L., Fourgeaud M., Mainardi J. L., Petit-Frère S., Marie A., Mengin-Lecreulx D., Arthur M., Gutmann L.. ( 2007a;). Identification of the l,d-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J Bacteriol189:3927–3931 [CrossRef][PubMed]
    [Google Scholar]
  26. Magnet S., Arbeloa A., Mainardi J. L., Hugonnet J. E., Fourgeaud M., Dubost L., Marie A., Delfosse V., Mayer C.. & other authors ( 2007b;). Specificity of l,d-transpeptidases from Gram-positive bacteria producing different peptidoglycan chemotypes. J Biol Chem282:13151–13159 [CrossRef][PubMed]
    [Google Scholar]
  27. Mainardi J. L., Morel V., Fourgeaud M., Cremniter J., Blanot D., Legrand R., Frehel C., Arthur M., Van Heijenoort J., Gutmann L.. ( 2002;). Balance between two transpeptidation mechanisms determines the expression of beta-lactam resistance in Enterococcus faecium . J Biol Chem277:35801–35807 [CrossRef][PubMed]
    [Google Scholar]
  28. Mainardi J. L., Hugonnet J. E., Rusconi F., Fourgeaud M., Dubost L., Moumi A. N., Delfosse V., Mayer C., Gutmann L.. & other authors ( 2007;). Unexpected inhibition of peptidoglycan ld-transpeptidase from Enterococcus faecium by the beta-lactam imipenem. J Biol Chem282:30414–30422 [CrossRef][PubMed]
    [Google Scholar]
  29. McNeil M., Daffe M., Brennan P. J.. ( 1990;). Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J Biol Chem265:18200–18206[PubMed]
    [Google Scholar]
  30. Patru M. M., Pavelka M. S. Jr. ( 2010;). A role for the class A penicillin-binding protein PonA2 in the survival of Mycobacterium smegmatis under conditions of nonreplication. J Bacteriol192:3043–3054 [CrossRef][PubMed]
    [Google Scholar]
  31. Purdy G. E., Niederweis M., Russell D. G.. ( 2009;). Decreased outer membrane permeability protects mycobacteria from killing by ubiquitin-derived peptides. Mol Microbiol73:844–857 [CrossRef][PubMed]
    [Google Scholar]
  32. Quintela J. C., Caparrós M., de Pedro M. A.. ( 1995;). Variability of peptidoglycan structural parameters in Gram-negative bacteria. FEMS Microbiol Lett125:95–100 [CrossRef][PubMed]
    [Google Scholar]
  33. Raymond J. B., Mahapatra S., Crick D. C., Pavelka M. S. Jr. ( 2005;). Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J Biol Chem280:326–333[PubMed][CrossRef]
    [Google Scholar]
  34. Sanders A. N., Pavelka M. S. Jr. ( 2013;). Phenotypic analysis of Escherichia coli mutants lacking l,d-transpeptidases. Microbiology159:1842–1852 [CrossRef][PubMed]
    [Google Scholar]
  35. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  36. Schoonmaker M. K., Bishai W. R., Lamichhane G.. ( 2014;). Nonclassical transpeptidases of Mycobacterium tuberculosis alter cell size, morphology, the cytosolic matrix, protein localization, virulence, and resistance to β-lactams. J Bacteriol196:1394–1402 [CrossRef][PubMed]
    [Google Scholar]
  37. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr. ( 1990;). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol4:1911–1919 [CrossRef][PubMed]
    [Google Scholar]
  38. Song H., Sandie R., Wang Y., Andrade-Navarro M. A., Niederweis M.. ( 2008;). Identification of outer membrane proteins of Mycobacterium tuberculosis . Tuberculosis (Edinb)88:526–544 [CrossRef][PubMed]
    [Google Scholar]
  39. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H.. & other authors ( 1991;). New use of BCG for recombinant vaccines. Nature351:456–460 [CrossRef][PubMed]
    [Google Scholar]
  40. van Kessel J. C., Hatfull G. F.. ( 2008;). Mycobacterial recombineering. Methods Mol Biol435:203–215 [CrossRef][PubMed]
    [Google Scholar]
  41. Whisstock J. C., Lesk A. M.. ( 1999;). SH3 domains in prokaryotes. Trends Biochem Sci24:132–133 [CrossRef][PubMed]
    [Google Scholar]
  42. Wietzerbin J., Das B. C., Petit J. F., Lederer E., Leyh-Bouille M., Ghuysen J. M.. ( 1974;). Occurrence of d-alanyl-(d)-meso-diaminopimelic acid and meso-diaminopimelyl-meso-diaminopimelic acid interpeptide linkages in the peptidoglycan of Mycobacteria. Biochemistry13:3471–3476 [CrossRef][PubMed]
    [Google Scholar]
  43. Williamson M. P.. ( 1994;). The structure and function of proline-rich regions in proteins. Biochem J297:249–260[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078980-0
Loading
/content/journal/micro/10.1099/mic.0.078980-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error