1887

Abstract

The tyrocidines, a complex of analogous cyclic decapeptides produced by , exhibited noteworthy activity against a range of phytopathogenic fungi, including , and . The activity of the tyrocidine peptide complex (Trc mixture) and purified tyrocidines exhibited minimum inhibition concentrations below 13 µg ml (~10 µM) and was significantly more potent than that of the commercial imidazole fungicide, bifonazole. Although the tyrocidines’ activity was negatively influenced by the presence of Ca, it remained unaffected by the presence of Mg, Na and K. Microscopic analysis revealed significant impact on the morphology of and including retarded germination and hyperbranching of hyphae. Studies with membrane-impermeable dyes, SYTOX green and propidium iodide suggested that the main mode of action of tyrocidines involves the disruption of fungal membrane integrity. Because of the tyrocidines’ broad spectrum and potent antifungal activity, possible multiple targets reducing the risk of overt resistance and general salt tolerance, they are promising candidates that warrant further investigation as bio-fungicides.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078840-0
2014-09-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/2089.html?itemId=/content/journal/micro/10.1099/mic.0.078840-0&mimeType=html&fmt=ahah

References

  1. Andreu D., Rivas L.. ( 1998;). Animal antimicrobial peptides: an overview. . Biopolymers 47:, 415–433. [CrossRef][PubMed]
    [Google Scholar]
  2. Bals R., Goldman M. J., Wilson J. M.. ( 1998;). Mouse β-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. . Infect Immun 66:, 1225–1232.[PubMed]
    [Google Scholar]
  3. Bennett J. W., Klich M.. ( 2003;). Mycotoxins. . Clin Microbiol Rev 16:, 497–516. [CrossRef][PubMed]
    [Google Scholar]
  4. Binder U., Oberparleiter C., Meyer V., Marx F.. ( 2010;). The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans. . Mol Microbiol 75:, 294–307. [CrossRef][PubMed]
    [Google Scholar]
  5. Bowman S. M., Free S. J.. ( 2006;). The structure and synthesis of the fungal cell wall. . Bioessays 28:, 799–808. [CrossRef][PubMed]
    [Google Scholar]
  6. Boyce K. J., Chang H., D’Souza C. A., Kronstad J. W.. ( 2005;). An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize. . Eukaryot Cell 4:, 2044–2056. [CrossRef][PubMed]
    [Google Scholar]
  7. Broekaert W. F., Terras F. R. G., Cammue B. P. A., Vanderleyden J.. ( 1990;). An automated quantitative assay for fungal growth inhibition. . FEMS Microbiol Lett 69:, 55–59. [CrossRef]
    [Google Scholar]
  8. Chakraborty S., Newton A. C.. ( 2011;). Climate change, plant diseases and food security: an overview. . Plant Pathol 60:, 2–14. [CrossRef]
    [Google Scholar]
  9. Cociancich S., Ghazi A., Hetru C., Hoffmann J. A., Letellier L.. ( 1993;). Insect defensin, an inducible antibacterial peptide, forms voltage-dependent channels in Micrococcus luteus. . J Biol Chem 268:, 19239–19245.[PubMed]
    [Google Scholar]
  10. Diánez F., Santos M., Blanco R., Tello J. C.. ( 2002;). Fungicide resistance in Botrytis cinerea isolates from strawberry crops in Huelva (southwestern Spain). . Phytoparasitica 30:, 529–534. [CrossRef]
    [Google Scholar]
  11. Druzhinina I. S., Kopchinskiy A. G., Komoń M., Bissett J., Szakacs G., Kubicek C. P.. ( 2005;). An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. . Fungal Genet Biol 42:, 813–828. [CrossRef][PubMed]
    [Google Scholar]
  12. Dubos R. J.. ( 1939;). Studies on a bactericidal agent extracted from a soil Bacillus: I. Preparation of the agent .its activity in vitro. . J Exp Med 70:, 1–10. [CrossRef][PubMed]
    [Google Scholar]
  13. Dubos R. J., Hotchkiss R. D.. ( 1941;). The production of bactericidal substances by aerobic sporulating bacilli. . J Exp Med 73:, 629–640. [CrossRef][PubMed]
    [Google Scholar]
  14. Eyéghé-Bickong H. A.. ( 2011;). Role of surfactin from Bacillus subtilis in protection against antimicrobial peptides produced by other Bacillus species. PhD thesis, Department of Biochemistry, University of Stellenbosch;, South Africa:. http://scholar.sun.ac.za/handle/10019.1/6773.
    [Google Scholar]
  15. Fillinger S., Chaveroche M.-K., Shimizu K., Keller N., d’Enfert C.. ( 2002;). cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. . Mol Microbiol 44:, 1001–1016. [CrossRef][PubMed]
    [Google Scholar]
  16. Frecer V.. ( 2006;). QSAR analysis of antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from protegrin-1. . Bioorg Med Chem 14:, 6065–6074. [CrossRef][PubMed]
    [Google Scholar]
  17. Glass N. L., Donaldson G. C.. ( 1995;). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. . Appl Environ Microbiol 61:, 1323–1330.[PubMed]
    [Google Scholar]
  18. Hancock R. E. W., Sahl H.-G.. ( 2006;). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. . Nat Biotechnol 24:, 1551–1557. [CrossRef][PubMed]
    [Google Scholar]
  19. Harris S. D.. ( 2008;). Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. . Mycologia 100:, 823–832. [CrossRef][PubMed]
    [Google Scholar]
  20. Hotchkiss R. D., Dubos R. J.. ( 1941;). The isolation of bactericidal substances from cultures of Bacillus brevis. . J Biol Chem 141:, 155–162.
    [Google Scholar]
  21. Hwang P. M., Vogel H. J.. ( 1998;). Structure-function relationships of antimicrobial peptides. . Biochem Cell Biol 76:, 235–246. [CrossRef][PubMed]
    [Google Scholar]
  22. Jackson S. L., Heath I. B.. ( 1993;). Roles of calcium ions in hyphal tip growth. . Microbiol Rev 57:, 367–382.[PubMed]
    [Google Scholar]
  23. Janisiewicz W. J., Korsten L.. ( 2002;). Biological control of postharvest diseases of fruits. . Annu Rev Phytopathol 40:, 411–441. [CrossRef][PubMed]
    [Google Scholar]
  24. Kaiserer L., Oberparleiter C., Weiler-Görz R., Burgstaller W., Leiter E., Marx F.. ( 2003;). Characterization of the Penicillium chrysogenum antifungal protein PAF. . Arch Microbiol 180:, 204–210. [CrossRef][PubMed]
    [Google Scholar]
  25. Keymanesh K., Soltani S., Sardari S.. ( 2009;). Application of antimicrobial peptides in agriculture and food industry. . World J Microbiol Biotechnol 25:, 933–944. [CrossRef]
    [Google Scholar]
  26. Klich M. A., Arthur K. S., Lax A. R., Bland J. M.. ( 1994;). Iturin A: a potential new fungicide for stored grains. . Mycopathologia 127:, 123–127. [CrossRef][PubMed]
    [Google Scholar]
  27. Knight S. C., Anthony V. M., Brady A. M., Greenland A. J., Heaney S. P., Murray D. C., Powell K. A., Schulz M. A., Spinks C. A.. & other authors ( 1997;). Rationale and perspectives on the development of fungicides. . Annu Rev Phytopathol 35:, 349–372. [CrossRef][PubMed]
    [Google Scholar]
  28. Kretschmar M., Nichterlein T., Nebe C. T., Hof H., Burger K. J.. ( 1996;). Fungicidal effect of tyrothricin on Candida albicans. . Mycoses 39:, 45–50. [CrossRef][PubMed]
    [Google Scholar]
  29. Kuo M., Gibbons W. A.. ( 1979;). Total assignments, including four aromatic residues, and sequence confirmation of the decapeptide tyrocidine A using difference double resonance. Qualitative nuclear overhauser effect criteria for beta turn and antiparallel beta-pleated sheet conformations. . J Biol Chem 254:, 6278–6287.[PubMed]
    [Google Scholar]
  30. Lehrer R. I., Ganz T., Szklarek D., Selsted M. E.. ( 1988;). Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations. . J Clin Invest 81:, 1829–1835. [CrossRef][PubMed]
    [Google Scholar]
  31. Leussa A. N.-N.. ( 2014;). Characterisation of small cyclic peptides with antimalarial and antilisterial activity. PhD thesis, Department of Biochemistry, University of Stellenbosch;, South Africa:. http://scholar.sun.ac.za/.handle.net/10019.1/86161.
    [Google Scholar]
  32. Leussa A. N.-N., Rautenbach M.. ( 2014;). Detailed SAR and PCA of the tyrocidines and analogues towards leucocin A-sensitive and leucocin A-resistant Listeria monocytogenes. . Chem Biol Drug Des. [CrossRef][PubMed]
    [Google Scholar]
  33. Lewis K.. ( 2001;). Riddle of biofilm resistance. . Antimicrob Agents Chemother 45:, 999–1007. [CrossRef][PubMed]
    [Google Scholar]
  34. Loll P. J., Upton E. C., Nahoum V., Economou N. J., Cocklin S.. ( 2014;). The high resolution structure of tyrocidine A reveals an amphipathic dimer. . Biochim Biophys Acta 1838:, 1199–1207. [CrossRef][PubMed]
    [Google Scholar]
  35. Mach B., Slayman C. W.. ( 1966;). Mode of action of tyrocidine on Neupospora. . Biochim Biophys Acta 124:, 351–361. [CrossRef][PubMed]
    [Google Scholar]
  36. Marques M. A., Citron D. M., Wang C. C.. ( 2007;). Development of tyrocidine A analogues with improved antibacterial activity. . Bioorg Med Chem 15:, 6667–6677. [CrossRef][PubMed]
    [Google Scholar]
  37. McMaster C. A., Plummer K. M., Porter I. J., Donald E. C.. ( 2013;). Antimicrobial activity of essential oils and pure oil compounds against soilborne pathogens of vegetables. . Australas Plant Pathol 42:, 385–392. [CrossRef]
    [Google Scholar]
  38. Muñoz A., López-García B., Marcos J. F.. ( 2006;). Studies on the mode of action of the antifungal hexapeptide PAF26. . Antimicrob Agents Chemother 50:, 3847–3855. [CrossRef][PubMed]
    [Google Scholar]
  39. Muñoz A., López-García B., Marcos J. F.. ( 2007;). Comparative study of antimicrobial peptides to control citrus postharvest decay caused by Penicillium digitatum. . J Agric Food Chem 55:, 8170–8176. [CrossRef][PubMed]
    [Google Scholar]
  40. Munyuki G., Jackson G. E., Venter G. A., Kövér K. E., Szilágyi L., Rautenbach M., Spathelf B. M., Bhattacharya B., van der Spoel D.. ( 2013;). β-Sheet structures and dimer models of the two major tyrocidines, antimicrobial peptides from Bacillus aneurinolyticus. . Biochemistry 52:, 7798–7806. [CrossRef][PubMed]
    [Google Scholar]
  41. Narayanasamy P.. ( 2005;). Postharvest Pathogens and Disease Management. Hoboken, NJ:: Wiley;. [CrossRef]
    [Google Scholar]
  42. Nesher I., Minz A., Kokkelink L., Tudzynski P., Sharon A.. ( 2011;). Regulation of pathogenic spore germination by CgRac1 in the fungal plant pathogen Colletotrichum gloeosporioides. . Eukaryot Cell 10:, 1122–1130. [CrossRef][PubMed]
    [Google Scholar]
  43. Papavizas G. C.. ( 1985;). Trichoderma and Gliocladum: biology, ecology and potential for biocontrol. . Annu Rev Phytopathol 23:, 23–54. [CrossRef]
    [Google Scholar]
  44. Paradies H. H.. ( 1979;). Aggregation of tyrocidine in aqueous solutions. . Biochem Biophys Res Commun 88:, 810–817. [CrossRef][PubMed]
    [Google Scholar]
  45. Park S.-C., Kim J.-Y., Lee J.-K., Hwang I., Cheong H., Nah J.-W., Hahm K.-S., Park Y.. ( 2009;). Antifungal mechanism of a novel antifungal protein from pumpkin rinds against various fungal pathogens. . J Agric Food Chem 57:, 9299–9304. [CrossRef][PubMed]
    [Google Scholar]
  46. Pfaller M. A., Messer S. A., Mills K., Bolmström A., Jones R. N.. ( 2001;). Evaluation of Etest method for determining caspofungin (MK-0991) susceptibilities of 726 clinical isolates of Candida species. . J Clin Microbiol 39:, 4387–4389. [CrossRef][PubMed]
    [Google Scholar]
  47. Rambaut A.. ( 2007;). Se-Al: sequence alignment editor. . Available from http://evolve.zoo.ox.ac.uk/.
  48. Rautenbach M., Gerstner G. D., Vlok N. M., Kulenkampff J., Westerhoff H. V.. ( 2006;). Analyses of dose-response curves to compare the antimicrobial activity of model cationic α-helical peptides highlights the necessity for a minimum of two activity parameters. . Anal Biochem 350:, 81–90. [CrossRef][PubMed]
    [Google Scholar]
  49. Rautenbach M., Vlok N. M., Stander M., Hoppe H. C.. ( 2007;). Inhibition of malaria parasite blood stages by tyrocidines, membrane-active cyclic peptide antibiotics from Bacillus brevis. . Biochim Biophys Acta 1768:, 1488–1497. [CrossRef][PubMed]
    [Google Scholar]
  50. Ruttenberg M. A., King T. P., Craig L. C.. ( 1965;). The use of the tyrocidines for the study of conformation and aggregation behavior. . J Am Chem Soc 87:, 4196–4198. [CrossRef][PubMed]
    [Google Scholar]
  51. Ruttenberg M. A., King T. P., Craig L. C.. ( 1966;). The chemistry of tyrocidine. VII. Studies on association behavior and implications regarding conformation. . Biochemistry 5:, 2857–2864. [CrossRef][PubMed]
    [Google Scholar]
  52. Rydlo T., Miltz J., Mor A.. ( 2006;). Eukaryotic antimicrobial peptides: promises and premises in food safety. . J Food Sci 71:, R125–R135. [CrossRef]
    [Google Scholar]
  53. Savazzini F., Longa C. M. O., Pertot I.. ( 2009;). Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy. . Soil Biol Biochem 41:, 1457–1465. [CrossRef]
    [Google Scholar]
  54. Silverman-Gavrila L. B., Lew R. R.. ( 2000;). Calcium and tip growth in Neurospora crassa. . Protoplasma 213:, 203–217. [CrossRef]
    [Google Scholar]
  55. Silverman-Gavrila L. B., Lew R. R.. ( 2002;). An IP3-activated Ca2+ channel regulates fungal tip growth. . J Cell Sci 115:, 5013–5025. [CrossRef][PubMed]
    [Google Scholar]
  56. Silverman-Gavrila L. B., Lew R. R.. ( 2003;). Calcium gradient dependence of Neurospora crassa hyphal growth. . Microbiology 149:, 2475–2485. [CrossRef][PubMed]
    [Google Scholar]
  57. Smith J. E., Solomons G., Lewis C., Anderson J. G.. ( 1995;). Role of mycotoxins in human and animal nutrition and health. . Nat Toxins 3:, 187–192, discussion 221. [CrossRef][PubMed]
    [Google Scholar]
  58. Spadaro D., Gullino M. L.. ( 2004;). State of the art and future prospects of the biological control of postharvest fruit diseases. . Int J Food Microbiol 91:, 185–194. [CrossRef][PubMed]
    [Google Scholar]
  59. Spathelf B. M.. ( 2010;). Qualitative structure-actvity relationships of the major tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus. PhD thesis, Department of Biochemistry, University of Stellenbosch;, South Africa:. http://scholar.sun.ac.za/handle/10019.1/4001.
    [Google Scholar]
  60. Spathelf B. M., Rautenbach M.. ( 2009;). Anti-listerial activity and structure-activity relationships of the six major tyrocidines, cyclic decapeptides from Bacillus aneurinolyticus. . Bioorg Med Chem 17:, 5541–5548. [CrossRef][PubMed]
    [Google Scholar]
  61. Spelbrink R. G., Dilmac N., Allen A., Smith T. J., Shah D. M., Hockerman G. H.. ( 2004;). Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. . Plant Physiol 135:, 2055–2067. [CrossRef][PubMed]
    [Google Scholar]
  62. Takeshita N., Higashitsuji Y., Konzack S., Fischer R.. ( 2008;). Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. . Mol Biol Cell 19:, 339–351. [CrossRef][PubMed]
    [Google Scholar]
  63. Takeshita N., Diallinas G., Fischer R.. ( 2012;). The role of flotillin FloA and stomatin StoA in the maintenance of apical sterol-rich membrane domains and polarity in the filamentous fungus Aspergillus nidulans. . Mol Microbiol 83:, 1136–1152. [CrossRef][PubMed]
    [Google Scholar]
  64. Tang X.-J., Thibault P., Boyd R. K.. ( 1992;). Characterisation of the tyrocidine and gramicidin fractions of the tyrothricin complex from Bacillus brevis using liquid chromatography and mass spectrometry. . Int J Mass Spectrom Ion Process 122:, 153–179. [CrossRef]
    [Google Scholar]
  65. Terras F. R., Schoofs H. M., De Bolle M. F., Van Leuven F., Rees S. B., Vanderleyden J., Cammue B. P., Broekaert W. F.. ( 1992;). Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. . J Biol Chem 267:, 15301–15309.[PubMed]
    [Google Scholar]
  66. Thevissen K., Ghazi A., De Samblanx G. W., Brownlee C., Osborn R. W., Broekaert W. F.. ( 1996;). Fungal membrane responses induced by plant defensins and thionins. . J Biol Chem 271:, 15018–15025. [CrossRef][PubMed]
    [Google Scholar]
  67. Thevissen K., de Mello Tavares P., Xu D., Blankenship J., Vandenbosch D., Idkowiak-Baldys J., Govaert G., Bink A., Rozental S.. & other authors ( 2012;). The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. . Mol Microbiol 84:, 166–180. [CrossRef][PubMed]
    [Google Scholar]
  68. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  69. Troskie A. M., Vlok N. M., Rautenbach M.. ( 2012;). A novel 96-well gel-based assay for determining antifungal activity against filamentous fungi. . J Microbiol Methods 91:, 551–558. [CrossRef][PubMed]
    [Google Scholar]
  70. Troskie A. M., Rautenbach M., Delattin N., Vosloo J. A., Dathe M., Cammue B. P., Thevissen K.. ( 2014;). Synergistic activity of the tyrocidines, antimicrobial cyclodecapeptides from Bacillus aneurinolyticus, with amphotericin B and caspofungin against Candida albicans biofilms. . Antimicrob Agents Chemother 58:, 3697–3707. [CrossRef][PubMed]
    [Google Scholar]
  71. van der Weerden N. L., Lay F. T., Anderson M. A.. ( 2008;). The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. . J Biol Chem 283:, 14445–14452. [CrossRef][PubMed]
    [Google Scholar]
  72. van ’t Hof W., Veerman E. C., Helmerhorst E. J., Amerongen A. V.. ( 2001;). Antimicrobial peptides: properties and applicability. . Biol Chem 382:, 597–619.[PubMed]
    [Google Scholar]
  73. Visagie C. M., Jacobs K.. ( 2012;). Three new additions to the genus Talaromyces isolated from Atlantis sandveld fynbos soils. . Persoonia 28:, 14–24. [CrossRef][PubMed]
    [Google Scholar]
  74. Vosloo J. A., Stander M. A., Leussa A. N.-N., Spathelf B. M., Rautenbach M.. ( 2013;). Manipulation of the tyrothricin production profile of Bacillus aneurinolyticus. . Microbiology 159:, 2200–2211. [CrossRef][PubMed]
    [Google Scholar]
  75. White T. J., Bruns T., Lee S., Taylor J. W.. ( 1990;). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. . In PCR Protocols: A Guide to Methods and Applications, pp. 315–322. Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J... San Diego, CA:: Academic Press;.
    [Google Scholar]
  76. Zasloff M.. ( 2002;). Antimicrobial peptides of multicellular organisms. . Nature 415:, 389–395. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078840-0
Loading
/content/journal/micro/10.1099/mic.0.078840-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error