1887

Abstract

is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking and/or genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078600-0
2014-08-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1705.html?itemId=/content/journal/micro/10.1099/mic.0.078600-0&mimeType=html&fmt=ahah

References

  1. Ariño J., Ramos J., Sychrová H..( 2010;). Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev74:95–120 [CrossRef][PubMed]
    [Google Scholar]
  2. Bairwa G., Kaur R..( 2011;). A novel role for a glycosylphosphatidylinositol-anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata. Mol Microbiol79:900–913 [CrossRef][PubMed]
    [Google Scholar]
  3. Barreto L., Canadell D., Petrezsélyová S., Navarrete C., Maresová L., Peréz-Valle J., Herrera R., Olier I., Giraldo J..& other authors ( 2011;). A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in Saccharomyces cerevisiae. Eukaryot Cell10:1241–1250 [CrossRef][PubMed]
    [Google Scholar]
  4. Calahorra M., Lozano C., Sánchez N. S., Peña A..( 2011;). Ketoconazole and miconazole alter potassium homeostasis in Saccharomyces cerevisiae. Biochim Biophys Acta1808:433–445 [CrossRef][PubMed]
    [Google Scholar]
  5. Denksteinova B., Gaskova D., Herman P., Vecer J., Malínský J., Plásek J., Sigler K..( 1997;). Monitoring of membrane potential changes in Saccharomyces cerevisiae by diS-C3(3) fluorescence. Folia Microbiol (Praha)42:221–224 [CrossRef][PubMed]
    [Google Scholar]
  6. Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., De Montigny J., Marck C., Neuvéglise C..& other authors ( 2004;). Genome evolution in yeasts. Nature430:35–44 [CrossRef][PubMed]
    [Google Scholar]
  7. Elicharova H., Sychrová H..( 2013;). Fluconazole treatment hyperpolarizes the plasma membrane of Candida cells. Med Mycol51:785–794 [CrossRef][PubMed]
    [Google Scholar]
  8. Fitzpatrick D. A., Logue M. E., Stajich J. E., Butler G..( 2006;). A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol6:99 [CrossRef][PubMed]
    [Google Scholar]
  9. Goffa E., Bialkova A., Batova M., Dzugasova V., Subik J..( 2011;). A yeast cell-based system for screening Candida glabrata multidrug resistance reversal agents and selection of loss-of-function pdr1 mutants. FEMS Yeast Res11:155–159 [CrossRef][PubMed]
    [Google Scholar]
  10. Gupta S. S., Ton V. K., Beaudry V., Rulli S., Cunningham K., Rao R..( 2003;). Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis. J Biol Chem278:28831–28839 [CrossRef][PubMed]
    [Google Scholar]
  11. Kinclová O., Ramos J., Potier S., Sychrová H..( 2001;). Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol40:656–668 [CrossRef][PubMed]
    [Google Scholar]
  12. Krauke Y., Sychrová H..( 2010a;). Chimeras between C. glabrata Cnh1 and S. cerevisiae Nha1 Na+/H+-antiporters are functional proteins increasing the salt tolerance of yeast cells. Folia Microbiol (Praha)55:435–441 [CrossRef][PubMed]
    [Google Scholar]
  13. Krauke Y., Sychrová H..( 2010b;). Four pathogenic Candida species differ in salt tolerance. Curr Microbiol61:335–339 [CrossRef][PubMed]
    [Google Scholar]
  14. Krauke Y., Sychrová H..( 2011;). Cnh1 Na+/H+ antiporter and Ena1 Na+-ATPase play different roles in cation homeostasis and cell physiology of Candida glabrata. FEMS Yeast Res11:29–41 [CrossRef][PubMed]
    [Google Scholar]
  15. Malác J., Urbánková E., Sigler K., Gásková D..( 2005;). Activity of yeast multidrug resistance pumps during growth is controlled by carbon source and the composition of growth-depleted medium: diS-C3(3) fluorescence assay. Int J Biochem Cell Biol37:2536–2543 [CrossRef][PubMed]
    [Google Scholar]
  16. Maresová L., Sychrová H..( 2007;). Applications of a microplate reader in yeast physiology research. Biotechniques43:667–672 [CrossRef][PubMed]
    [Google Scholar]
  17. Maresová L., Urbánková E., Gás˘ková D., Sychrová H..( 2006;). Measurements of plasma membrane potential changes in Saccharomyces cerevisiae cells reveal the importance of the Tok1 channel in membrane potential maintenance. FEMS Yeast Res6:1039–1046 [CrossRef][PubMed]
    [Google Scholar]
  18. Maresová L., Muend S., Zhang Y. Q., Sychrová H., Rao R..( 2009;). Membrane hyperpolarization drives cation influx and fungicidal activity of amiodarone. J Biol Chem284:2795–2802 [CrossRef][PubMed]
    [Google Scholar]
  19. McCusker J. H., Perlin D. S., Haber J. E..( 1987;). Pleiotropic plasma membrane ATPase mutations of Saccharomyces cerevisiae. Mol Cell Biol7:4082–4088[PubMed]
    [Google Scholar]
  20. Pappas P. G., Kauffman C. A., Andes D., Benjamin D. K. Jr, Calandra T. F., Edwards J. E. Jr, Filler S. G., Fisher J. F., Kullberg B. J..& other authors ( 2009;). Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis48:503–535 [CrossRef][PubMed]
    [Google Scholar]
  21. Peña A., Sánchez N. S., Calahorra M..( 2010;). Estimation of the electric plasma membrane potential difference in yeast with fluorescent dyes: comparative study of methods. J Bioenerg Biomembr42:419–432 [CrossRef][PubMed]
    [Google Scholar]
  22. Perlin D. S., Brown C. L., Haber J. E..( 1988;). Membrane potential defect in hygromycin B-resistant pma1 mutants of Saccharomyces cerevisiae. J Biol Chem263:18118–18122[PubMed]
    [Google Scholar]
  23. Pfaller M., Neofytos D., Diekema D., Azie N., Meier-Kriesche H. U., Quan S. P., Horn D..( 2012;). Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance®) registry, 2004-2008. Diagn Microbiol Infect Dis74:323–331 [CrossRef][PubMed]
    [Google Scholar]
  24. Ramos J., Ariño J., Sychrová H..( 2011;). Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiol Lett317:1–8 [CrossRef][PubMed]
    [Google Scholar]
  25. Reuss O., Vik Å., Kolter R., Morschhäuser J..( 2004;). The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene341:119–127 [CrossRef][PubMed]
    [Google Scholar]
  26. Ruhnke M., Rickerts V., Cornely O. A., Buchheidt D., Glöckner A., Heinz W., Höhl R., Horré R., Karthaus M..& other authors ( 2011;). Diagnosis and therapy of Candida infections: joint recommendations of the German Speaking Mycological Society and the Paul-Ehrlich-Society for Chemotherapy. Mycoses54:279–310 [CrossRef][PubMed]
    [Google Scholar]
  27. Saier M. H. Jr, Yen M. R., Noto K., Tamang D. G., Elkan C..( 2009;). The Transporter Classification Database: recent advances. Nucleic Acids Res37:Database issueD274–D278 [CrossRef][PubMed]
    [Google Scholar]
  28. Stříbný J., Kinclová-Zimmermannová O., Sychrová H..( 2012;). Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae. Curr Genet58:255–264 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078600-0
Loading
/content/journal/micro/10.1099/mic.0.078600-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error