Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity Free

Abstract

The hydrocarbon monooxygenase (HMO) of NBB4 is a member of the copper-containing membrane monooxygenase (CuMMO) superfamily, which also contains particulate methane monooxygenases (pMMOs) and ammonia monooxygenases (AMOs). CuMMOs have broad applications due to their ability to catalyse the oxidation of difficult substrates of environmental and industrial relevance. Most of our understanding of CuMMO biochemistry is based on pMMOs and AMOs as models. All three available structures are from pMMOs. These share two metal sites: a dicopper centre coordinated by histidine residues in subunit-B and a ‘variable-metal’ site coordinated by carboxylate and histidine residues from subunit-C. The exact nature and role of these sites is strongly debated. Significant barriers to progress have been the physiologically specialized nature of methanotrophs and autotrophic ammonia-oxidizers, lack of a recombinant expression system for either enzyme and difficulty in purification of active protein. In this study we use the newly developed HMO model system to perform site-directed mutagenesis on the predicted metal-binding residues in the HmoB and HmoC of NBB4 HMO. All mutations of predicted HmoC metal centre ligands abolished enzyme activity. Mutation of a predicted copper-binding residue of HmoB (B-H155V) reduced activity by 81 %. Mutation of a site that shows conservation within physiologically defined subgroups of CuMMOs was shown to reduce relative HMO activity towards larger alkanes. The study demonstrates that the modelled dicopper site of subunit-B is not sufficient for HMO activity and that a metal centre predicted to be coordinated by residues in subunit-C is essential for activity.

Funding
This study was supported by the:
  • Australian Research Council
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078584-0
2014-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1267.html?itemId=/content/journal/micro/10.1099/mic.0.078584-0&mimeType=html&fmt=ahah

References

  1. Abell G. C. J., Banks J., Ross D. J., Keane J. P., Robert S. S., Revill A. T., Volkman J. K. ( 2011). Effects of estuarine sediment hypoxia on nitrogen fluxes and ammonia oxidizer gene transcription. FEMS Microbiol Ecol 75:111–122 [View Article][PubMed]
    [Google Scholar]
  2. Arnold K., Bordoli L., Kopp J., Schwede T. ( 2006). The swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201 [View Article][PubMed]
    [Google Scholar]
  3. Baani M., Liesack W. ( 2008). Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci U S A 105:10203–10208 [View Article][PubMed]
    [Google Scholar]
  4. Balasubramanian R., Smith S. M., Rawat S., Yatsunyk L. A., Stemmler T. L., Rosenzweig A. C. ( 2010). Oxidation of methane by a biological dicopper centre. Nature 465:115–119 [View Article][PubMed]
    [Google Scholar]
  5. Bédard C., Knowles R. ( 1989). Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84[PubMed]
    [Google Scholar]
  6. Berube P. M., Stahl D. A. ( 2012). The divergent AmoC3 subunit of ammonia monooxygenase functions as part of a stress response system in Nitrosomonas europaea. J Bacteriol 194:3448–3456 [View Article][PubMed]
    [Google Scholar]
  7. Berube P. M., Samudrala R., Stahl D. A. ( 2007). Transcription of all amoC copies is associated with recovery of Nitrosomonas europaea from ammonia starvation. J Bacteriol 189:3935–3944 [View Article][PubMed]
    [Google Scholar]
  8. Campbell M. A. C., Chain P. S., Dang H., El Sheikh A. F., Norton J. M., Ward N. L., Ward B. B., Klotz M. G. ( 2011). Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world’s oceans: calls to validate the names ‘Nitrosococcus halophilus’ and ‘Nitrosomonas mobilis’. FEMS Microbiol Ecol 76:39–48 [View Article][PubMed]
    [Google Scholar]
  9. Chan S. I., Wang V. C. C., Lai J. C. H., Yu S. S. F., Chen P. P. Y., Chen K. H. C., Chen C. L., Chan M. K. ( 2007). Redox potentiometry studies of particulate methane monooxygenase: support for a trinuclear copper cluster active site. Angew Chem Int Ed Engl 46:1992–1994 [View Article][PubMed]
    [Google Scholar]
  10. Coleman N. V., Mattes T. E., Gossett J. M., Spain J. C. ( 2002). Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68:6162–6171 [View Article][PubMed]
    [Google Scholar]
  11. Coleman N. V., Le N. B., Ly M. A., Ogawa H. E., McCarl V., Wilson N. L., Holmes A. J. ( 2012). Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J 6:171–182 [View Article][PubMed]
    [Google Scholar]
  12. Conrad R. ( 1996). Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–640[PubMed]
    [Google Scholar]
  13. Culpepper M. A., Rosenzweig A. C. ( 2012). Architecture and active site of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 47:483–492 [View Article][PubMed]
    [Google Scholar]
  14. Dalton H. ( 2005). The Leeuwenhoek Lecture 2000. The natural and unnatural history of methane-oxidizing bacteria. Philos Trans R Soc Lond B Biol Sci 360:1207–1222 [View Article][PubMed]
    [Google Scholar]
  15. Dam B., Dam S., Kim Y., Liesack W. ( 2014). Ammonium induces differential expression of methane and nitrogen metabolism-related genes in Methylocystis sp. strain SC2. Environ Microbiol [View Article][PubMed]
    [Google Scholar]
  16. Dunfield P. F., Yuryev A., Senin P., Smirnova A. V., Stott M. B., Hou S., Ly B., Saw J. H., Zhou Z. & other authors ( 2007). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882 [View Article][PubMed]
    [Google Scholar]
  17. Gilch S., Vogel M., Lorenz M. W., Meyer O., Schmidt I. ( 2009). Interaction of the mechanism-based inactivator acetylene with ammonia monooxygenase of Nitrosomonas europaea. Microbiology 155:279–284 [View Article][PubMed]
    [Google Scholar]
  18. Guex N., Peitsch M. C. ( 1997). swiss-model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723 [View Article][PubMed]
    [Google Scholar]
  19. Hakemian A. S., Kondapalli K. C., Telser J., Hoffman B. M., Stemmler T. L., Rosenzweig A. C. ( 2008). The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry 47:6793–6801 [View Article][PubMed]
    [Google Scholar]
  20. Hamamura N., Storfa R. T., Semprini L., Arp D. J. ( 1999). Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol 65:4586–4593[PubMed]
    [Google Scholar]
  21. Hatzenpichler R. ( 2012). Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol 78:7501–7510 [View Article][PubMed]
    [Google Scholar]
  22. Henckel T., Friedrich M., Conrad R. ( 1999). Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65:1980–1990[PubMed]
    [Google Scholar]
  23. Himes R. A., Karlin K. D. ( 2009). A new copper-oxo player in methane oxidation. Proc Natl Acad Sci U S A 106:18877–18878 [View Article][PubMed]
    [Google Scholar]
  24. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. ( 1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [View Article][PubMed]
    [Google Scholar]
  25. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. ( 1995). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132:203–208 [View Article][PubMed]
    [Google Scholar]
  26. Holmes A. J., Roslev P., McDonald I. R., Iversen N., Henriksen K., Murrell J. C. ( 1999). Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65:3312–3318[PubMed]
    [Google Scholar]
  27. Hubley J. H. T., Thomson A. W., Wilkinson J. F. ( 1975). Specific inhibitors of methane oxidation in Methylosinus trichosporium. Arch Microbiol 102:199–202 [View Article]
    [Google Scholar]
  28. Hyman M. R., Wood P. M. ( 1985). Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene. Biochem J 227:719–725[PubMed]
    [Google Scholar]
  29. Jiang H., Chen Y., Jiang P. X., Zhang C., Smith T. J., Murrell J. C., Xing X. H. ( 2010). Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49:277–288 [View Article]
    [Google Scholar]
  30. Jones R. D., Morita R. Y. ( 1983). Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl Environ Microbiol 45:401–410[PubMed]
    [Google Scholar]
  31. Juliette L. Y., Hyman M. R., Arp D. J. ( 1993). Mechanism-based inactivation of ammonia monooxygenase in Nitrosomonas europaea by allylsulfide. Appl Environ Microbiol 59:3728–3735[PubMed]
    [Google Scholar]
  32. Le N. B., Coleman N. V. ( 2011). Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4. Biodegradation 22:1095–1108 [View Article][PubMed]
    [Google Scholar]
  33. Lieberman R. L., Rosenzweig A. C. ( 2005). Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434:177–182 [View Article][PubMed]
    [Google Scholar]
  34. Ly M. A., Liew E. F., Le N. B., Coleman N. V. ( 2011). Construction and evaluation of pMycoFos, a fosmid shuttle vector for Mycobacterium spp. with inducible gene expression and copy number control. J Microbiol Methods 86:320–326 [View Article][PubMed]
    [Google Scholar]
  35. Martinho M., Choi D. W., Dispirito A. A., Antholine W. E., Semrau J. D., Münck E. ( 2007). Mössbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus Bath: evidence for a diiron center. J Am Chem Soc 129:15783–15785 [View Article][PubMed]
    [Google Scholar]
  36. MatrixScience ( 2013). Matrix Science Mascot Software London: MatrixScience;
    [Google Scholar]
  37. Menyailo O. V., Hungate B. A., Abraham W. R., Conrad R. ( 2008). Changing land use reduces soil CH4 uptake by altering biomass and activity but not composition of high-affinity methanotrophs. Glob Change Biol 14:2405–2419 [View Article]
    [Google Scholar]
  38. Molloy M. P. ( 2008). 2D PAGE: Sample Preparation and Fractionation Totowa, NJ: Humana Press;
    [Google Scholar]
  39. Mußmann M., Brito I., Pitcher A., Sinninghe Damsté J. S., Hatzenpichler R., Richter A., Nielsen J. L., Nielsen P. H., Müller A. & other authors ( 2011). Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci U S A 108:16771–16776 [View Article][PubMed]
    [Google Scholar]
  40. Nazaries L., Pan Y., Bodrossy L., Baggs E. M., Millard P., Murrell J. C., Singh B. K. ( 2013). Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl Environ Microbiol 79:4031–4040 [View Article][PubMed]
    [Google Scholar]
  41. Op den Camp H. J. M., Islam T., Stott M. B., Harhangi H. R., Hynes A., Schouten S., Jetten M. S. M., Birkeland N. K., Pol A., Dunfield P. F. ( 2009). Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306 [View Article][PubMed]
    [Google Scholar]
  42. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E. ( 2004). UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612 [View Article][PubMed]
    [Google Scholar]
  43. Pol A., Heijmans K., Harhangi H. R., Tedesco D., Jetten M. S. M., Op den Camp H. J. ( 2007). Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878 [View Article][PubMed]
    [Google Scholar]
  44. Prior S. D., Dalton H. ( 1985). The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J Gen Microbiol 131:155–163
    [Google Scholar]
  45. Reim A., Lüke C., Krause S., Pratscher J., Frenzel P. ( 2012). One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic–anoxic interface in a flooded paddy soil. ISME J 6:2128–2139 [View Article][PubMed]
    [Google Scholar]
  46. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. vol. 3 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  47. Schwede T., Kopp J., Guex N., Peitsch M. C. ( 2003). swiss-model: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385 [View Article][PubMed]
    [Google Scholar]
  48. Scott N. E., Marzook N. B., Deutscher A., Falconer L., Crossett B., Djordjevic S. P., Cordwell S. J. ( 2010). Mass spectrometric characterization of the Campylobacter jejuni adherence factor CadF reveals post-translational processing that removes immunogenicity while retaining fibronectin binding. Proteomics 10:277–288 [View Article][PubMed]
    [Google Scholar]
  49. Seidman C. E. ( 1994). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  50. Semrau J. D., Dispirito A. A., Murrell J. C. ( 2008). Life in the extreme: thermoacidophilic methanotrophy. Trends Microbiol 16:190–193 [View Article][PubMed]
    [Google Scholar]
  51. Semrau J. D., DiSpirito A. A., Yoon S. ( 2010). Methanotrophs and copper. FEMS Microbiol Rev 34:496–531[PubMed]
    [Google Scholar]
  52. Singh B. K., Bardgett R. D., Smith P., Reay D. S. ( 2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790 [View Article][PubMed]
    [Google Scholar]
  53. Smith S. M., Rawat S., Telser J., Hoffman B. M., Stemmler T. L., Rosenzweig A. C. ( 2011). Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. Biochemistry 50:10231–10240 [View Article][PubMed]
    [Google Scholar]
  54. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr ( 1990). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919 [View Article][PubMed]
    [Google Scholar]
  55. Stahl D. A., de la Torre J. R. ( 2012). Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol 66:83–101 [View Article][PubMed]
    [Google Scholar]
  56. Stolyar S., Costello A. M., Peeples T. L., Lidstrom M. E. ( 1999). Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology 145:1235–1244 [View Article][PubMed]
    [Google Scholar]
  57. Ward B. B. ( 1987). Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus. Arch Microbiol 147:126–133 [View Article]
    [Google Scholar]
  58. Woertink J. S., Smeets P. J., Groothaert M. H., Vance M. A., Sels B. F., Schoonheydt R. A., Solomon E. I. ( 2009). A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc Natl Acad Sci U S A 106:18908–18913 [View Article][PubMed]
    [Google Scholar]
  59. Zahn J. A., DiSpirito A. A. ( 1996). Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol 178:1018–1029[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078584-0
Loading
/content/journal/micro/10.1099/mic.0.078584-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed