1887

Abstract

The hydrocarbon monooxygenase (HMO) of NBB4 is a member of the copper-containing membrane monooxygenase (CuMMO) superfamily, which also contains particulate methane monooxygenases (pMMOs) and ammonia monooxygenases (AMOs). CuMMOs have broad applications due to their ability to catalyse the oxidation of difficult substrates of environmental and industrial relevance. Most of our understanding of CuMMO biochemistry is based on pMMOs and AMOs as models. All three available structures are from pMMOs. These share two metal sites: a dicopper centre coordinated by histidine residues in subunit-B and a ‘variable-metal’ site coordinated by carboxylate and histidine residues from subunit-C. The exact nature and role of these sites is strongly debated. Significant barriers to progress have been the physiologically specialized nature of methanotrophs and autotrophic ammonia-oxidizers, lack of a recombinant expression system for either enzyme and difficulty in purification of active protein. In this study we use the newly developed HMO model system to perform site-directed mutagenesis on the predicted metal-binding residues in the HmoB and HmoC of NBB4 HMO. All mutations of predicted HmoC metal centre ligands abolished enzyme activity. Mutation of a predicted copper-binding residue of HmoB (B-H155V) reduced activity by 81 %. Mutation of a site that shows conservation within physiologically defined subgroups of CuMMOs was shown to reduce relative HMO activity towards larger alkanes. The study demonstrates that the modelled dicopper site of subunit-B is not sufficient for HMO activity and that a metal centre predicted to be coordinated by residues in subunit-C is essential for activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078584-0
2014-06-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1267.html?itemId=/content/journal/micro/10.1099/mic.0.078584-0&mimeType=html&fmt=ahah

References

  1. Abell G. C. J., Banks J., Ross D. J., Keane J. P., Robert S. S., Revill A. T., Volkman J. K..( 2011;). Effects of estuarine sediment hypoxia on nitrogen fluxes and ammonia oxidizer gene transcription. FEMS Microbiol Ecol75:111–122 [CrossRef][PubMed]
    [Google Scholar]
  2. Arnold K., Bordoli L., Kopp J., Schwede T..( 2006;). The swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics22:195–201 [CrossRef][PubMed]
    [Google Scholar]
  3. Baani M., Liesack W..( 2008;). Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci U S A105:10203–10208 [CrossRef][PubMed]
    [Google Scholar]
  4. Balasubramanian R., Smith S. M., Rawat S., Yatsunyk L. A., Stemmler T. L., Rosenzweig A. C..( 2010;). Oxidation of methane by a biological dicopper centre. Nature465:115–119 [CrossRef][PubMed]
    [Google Scholar]
  5. Bédard C., Knowles R..( 1989;). Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev53:68–84[PubMed]
    [Google Scholar]
  6. Berube P. M., Stahl D. A..( 2012;). The divergent AmoC3 subunit of ammonia monooxygenase functions as part of a stress response system in Nitrosomonas europaea. J Bacteriol194:3448–3456 [CrossRef][PubMed]
    [Google Scholar]
  7. Berube P. M., Samudrala R., Stahl D. A..( 2007;). Transcription of all amoC copies is associated with recovery of Nitrosomonas europaea from ammonia starvation. J Bacteriol189:3935–3944 [CrossRef][PubMed]
    [Google Scholar]
  8. Campbell M. A. C., Chain P. S., Dang H., El Sheikh A. F., Norton J. M., Ward N. L., Ward B. B., Klotz M. G..( 2011;). Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world’s oceans: calls to validate the names ‘Nitrosococcus halophilus’ and ‘Nitrosomonas mobilis’. FEMS Microbiol Ecol76:39–48 [CrossRef][PubMed]
    [Google Scholar]
  9. Chan S. I., Wang V. C. C., Lai J. C. H., Yu S. S. F., Chen P. P. Y., Chen K. H. C., Chen C. L., Chan M. K..( 2007;). Redox potentiometry studies of particulate methane monooxygenase: support for a trinuclear copper cluster active site. Angew Chem Int Ed Engl46:1992–1994 [CrossRef][PubMed]
    [Google Scholar]
  10. Coleman N. V., Mattes T. E., Gossett J. M., Spain J. C..( 2002;). Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol68:6162–6171 [CrossRef][PubMed]
    [Google Scholar]
  11. Coleman N. V., Le N. B., Ly M. A., Ogawa H. E., McCarl V., Wilson N. L., Holmes A. J..( 2012;). Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J6:171–182 [CrossRef][PubMed]
    [Google Scholar]
  12. Conrad R..( 1996;). Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev60:609–640[PubMed]
    [Google Scholar]
  13. Culpepper M. A., Rosenzweig A. C..( 2012;). Architecture and active site of particulate methane monooxygenase. Crit Rev Biochem Mol Biol47:483–492 [CrossRef][PubMed]
    [Google Scholar]
  14. Dalton H..( 2005;). The Leeuwenhoek Lecture 2000. The natural and unnatural history of methane-oxidizing bacteria. Philos Trans R Soc Lond B Biol Sci360:1207–1222 [CrossRef][PubMed]
    [Google Scholar]
  15. Dam B., Dam S., Kim Y., Liesack W..( 2014;). Ammonium induces differential expression of methane and nitrogen metabolism-related genes in Methylocystis sp. strain SC2. Environ Microbiol [CrossRef][PubMed]
    [Google Scholar]
  16. Dunfield P. F., Yuryev A., Senin P., Smirnova A. V., Stott M. B., Hou S., Ly B., Saw J. H., Zhou Z..& other authors ( 2007;). Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature450:879–882 [CrossRef][PubMed]
    [Google Scholar]
  17. Gilch S., Vogel M., Lorenz M. W., Meyer O., Schmidt I..( 2009;). Interaction of the mechanism-based inactivator acetylene with ammonia monooxygenase of Nitrosomonas europaea. Microbiology155:279–284 [CrossRef][PubMed]
    [Google Scholar]
  18. Guex N., Peitsch M. C..( 1997;). swiss-model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis18:2714–2723 [CrossRef][PubMed]
    [Google Scholar]
  19. Hakemian A. S., Kondapalli K. C., Telser J., Hoffman B. M., Stemmler T. L., Rosenzweig A. C..( 2008;). The metal centers of particulate methane monooxygenase from Methylosinus trichosporium OB3b. Biochemistry47:6793–6801 [CrossRef][PubMed]
    [Google Scholar]
  20. Hamamura N., Storfa R. T., Semprini L., Arp D. J..( 1999;). Diversity in butane monooxygenases among butane-grown bacteria. Appl Environ Microbiol65:4586–4593[PubMed]
    [Google Scholar]
  21. Hatzenpichler R..( 2012;). Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl Environ Microbiol78:7501–7510 [CrossRef][PubMed]
    [Google Scholar]
  22. Henckel T., Friedrich M., Conrad R..( 1999;). Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol65:1980–1990[PubMed]
    [Google Scholar]
  23. Himes R. A., Karlin K. D..( 2009;). A new copper-oxo player in methane oxidation. Proc Natl Acad Sci U S A106:18877–18878 [CrossRef][PubMed]
    [Google Scholar]
  24. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R..( 1989;). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59 [CrossRef][PubMed]
    [Google Scholar]
  25. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C..( 1995;). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett132:203–208 [CrossRef][PubMed]
    [Google Scholar]
  26. Holmes A. J., Roslev P., McDonald I. R., Iversen N., Henriksen K., Murrell J. C..( 1999;). Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol65:3312–3318[PubMed]
    [Google Scholar]
  27. Hubley J. H. T., Thomson A. W., Wilkinson J. F..( 1975;). Specific inhibitors of methane oxidation in Methylosinus trichosporium. Arch Microbiol102:199–202 [CrossRef]
    [Google Scholar]
  28. Hyman M. R., Wood P. M..( 1985;). Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene. Biochem J227:719–725[PubMed]
    [Google Scholar]
  29. Jiang H., Chen Y., Jiang P. X., Zhang C., Smith T. J., Murrell J. C., Xing X. H..( 2010;). Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J49:277–288 [CrossRef]
    [Google Scholar]
  30. Jones R. D., Morita R. Y..( 1983;). Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europaea. Appl Environ Microbiol45:401–410[PubMed]
    [Google Scholar]
  31. Juliette L. Y., Hyman M. R., Arp D. J..( 1993;). Mechanism-based inactivation of ammonia monooxygenase in Nitrosomonas europaea by allylsulfide. Appl Environ Microbiol59:3728–3735[PubMed]
    [Google Scholar]
  32. Le N. B., Coleman N. V..( 2011;). Biodegradation of vinyl chloride, cis-dichloroethene and 1,2-dichloroethane in the alkene/alkane-oxidising Mycobacterium strain NBB4. Biodegradation22:1095–1108 [CrossRef][PubMed]
    [Google Scholar]
  33. Lieberman R. L., Rosenzweig A. C..( 2005;). Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature434:177–182 [CrossRef][PubMed]
    [Google Scholar]
  34. Ly M. A., Liew E. F., Le N. B., Coleman N. V..( 2011;). Construction and evaluation of pMycoFos, a fosmid shuttle vector for Mycobacterium spp. with inducible gene expression and copy number control. J Microbiol Methods86:320–326 [CrossRef][PubMed]
    [Google Scholar]
  35. Martinho M., Choi D. W., Dispirito A. A., Antholine W. E., Semrau J. D., Münck E..( 2007;). Mössbauer studies of the membrane-associated methane monooxygenase from Methylococcus capsulatus Bath: evidence for a diiron center. J Am Chem Soc129:15783–15785 [CrossRef][PubMed]
    [Google Scholar]
  36. MatrixScience( 2013;). Matrix Science Mascot Software London: MatrixScience;
    [Google Scholar]
  37. Menyailo O. V., Hungate B. A., Abraham W. R., Conrad R..( 2008;). Changing land use reduces soil CH4 uptake by altering biomass and activity but not composition of high-affinity methanotrophs. Glob Change Biol14:2405–2419 [CrossRef]
    [Google Scholar]
  38. Molloy M. P..( 2008;). 2D PAGE: Sample Preparation and Fractionation Totowa, NJ: Humana Press;
    [Google Scholar]
  39. Mußmann M., Brito I., Pitcher A., Sinninghe Damsté J. S., Hatzenpichler R., Richter A., Nielsen J. L., Nielsen P. H., Müller A..& other authors ( 2011;). Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci U S A108:16771–16776 [CrossRef][PubMed]
    [Google Scholar]
  40. Nazaries L., Pan Y., Bodrossy L., Baggs E. M., Millard P., Murrell J. C., Singh B. K..( 2013;). Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl Environ Microbiol79:4031–4040 [CrossRef][PubMed]
    [Google Scholar]
  41. Op den Camp H. J. M., Islam T., Stott M. B., Harhangi H. R., Hynes A., Schouten S., Jetten M. S. M., Birkeland N. K., Pol A., Dunfield P. F..( 2009;). Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep1:293–306 [CrossRef][PubMed]
    [Google Scholar]
  42. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E..( 2004;). UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem25:1605–1612 [CrossRef][PubMed]
    [Google Scholar]
  43. Pol A., Heijmans K., Harhangi H. R., Tedesco D., Jetten M. S. M., Op den Camp H. J..( 2007;). Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature450:874–878 [CrossRef][PubMed]
    [Google Scholar]
  44. Prior S. D., Dalton H..( 1985;). The effect of copper ions on membrane content and methane monooxygenase activity in methanol-grown cells of Methylococcus capsulatus (Bath). J Gen Microbiol131:155–163
    [Google Scholar]
  45. Reim A., Lüke C., Krause S., Pratscher J., Frenzel P..( 2012;). One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic–anoxic interface in a flooded paddy soil. ISME J6:2128–2139 [CrossRef][PubMed]
    [Google Scholar]
  46. Sambrook J., Russell D. W..( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn.vol. 3 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  47. Schwede T., Kopp J., Guex N., Peitsch M. C..( 2003;). swiss-model: an automated protein homology-modeling server. Nucleic Acids Res31:3381–3385 [CrossRef][PubMed]
    [Google Scholar]
  48. Scott N. E., Marzook N. B., Deutscher A., Falconer L., Crossett B., Djordjevic S. P., Cordwell S. J..( 2010;). Mass spectrometric characterization of the Campylobacter jejuni adherence factor CadF reveals post-translational processing that removes immunogenicity while retaining fibronectin binding. Proteomics10:277–288 [CrossRef][PubMed]
    [Google Scholar]
  49. Seidman C. E..( 1994;). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  50. Semrau J. D., Dispirito A. A., Murrell J. C..( 2008;). Life in the extreme: thermoacidophilic methanotrophy. Trends Microbiol16:190–193 [CrossRef][PubMed]
    [Google Scholar]
  51. Semrau J. D., DiSpirito A. A., Yoon S..( 2010;). Methanotrophs and copper. FEMS Microbiol Rev34:496–531[PubMed]
    [Google Scholar]
  52. Singh B. K., Bardgett R. D., Smith P., Reay D. S..( 2010;). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol8:779–790 [CrossRef][PubMed]
    [Google Scholar]
  53. Smith S. M., Rawat S., Telser J., Hoffman B. M., Stemmler T. L., Rosenzweig A. C..( 2011;). Crystal structure and characterization of particulate methane monooxygenase from Methylocystis species strain M. Biochemistry50:10231–10240 [CrossRef][PubMed]
    [Google Scholar]
  54. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr.( 1990;). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol4:1911–1919 [CrossRef][PubMed]
    [Google Scholar]
  55. Stahl D. A., de la Torre J. R..( 2012;). Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol66:83–101 [CrossRef][PubMed]
    [Google Scholar]
  56. Stolyar S., Costello A. M., Peeples T. L., Lidstrom M. E..( 1999;). Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath. Microbiology145:1235–1244 [CrossRef][PubMed]
    [Google Scholar]
  57. Ward B. B..( 1987;). Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus. Arch Microbiol147:126–133 [CrossRef]
    [Google Scholar]
  58. Woertink J. S., Smeets P. J., Groothaert M. H., Vance M. A., Sels B. F., Schoonheydt R. A., Solomon E. I..( 2009;). A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc Natl Acad Sci U S A106:18908–18913 [CrossRef][PubMed]
    [Google Scholar]
  59. Zahn J. A., DiSpirito A. A..( 1996;). Membrane-associated methane monooxygenase from Methylococcus capsulatus (Bath). J Bacteriol178:1018–1029[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078584-0
Loading
/content/journal/micro/10.1099/mic.0.078584-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error