1887

Abstract

The biosynthesis of cell-wall peptidoglycan is a complex process that involves six different penicillin-binding proteins (PBPs) in . Two of these, PBP2x and PBP2b, are monofunctional transpeptidases that catalyse the formation of peptide cross-links between adjacent glycan strands. Both of them are bitopic membrane proteins with a small cytoplasmic and a large extracellular domain. PBP2x and PBP2b are essential for septal and peripheral peptidoglycan synthesis, respectively. Although several studies have investigated the properties of their extracellular catalytic domains, it is not known whether the role of their N-terminal non-catalytic domains extends beyond that of being simple anchoring devices. We therefore decided to use reciprocal domain swapping and mutational analysis to gain more information about the biological function of the membrane anchors and cytoplasmic tails of PBP2x and PBP2b. In the case of PBP2x both domains are essential, but neither the membrane anchor nor the cytoplasmic domain of PBP2x appear to serve as major localization signals. Instead, our results suggest that they are involved in interactions with other components of the divisome. Mutations of conserved amino acids in the cytoplasmic domain of PBP2x resulted in loss of function, underlining the importance of this region. The cytoplasmic domain of PBP2b could be swapped with the corresponding domain from PBP2x, whereas replacement of the PBP2b transmembrane domain with the corresponding PBP2x domain gave rise to slow-growing cells with grossly abnormal morphology. When both domains were exchanged simultaneously the cells were no longer viable.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078535-0
2014-08-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1585.html?itemId=/content/journal/micro/10.1099/mic.0.078535-0&mimeType=html&fmt=ahah

References

  1. Barreteau H., Kovač A., Boniface A., Sova M., Gobec S., Blanot D.. ( 2008;). Cytoplasmic steps of peptidoglycan biosynthesis. . FEMS Microbiol Rev 32:, 168–207. [CrossRef][PubMed]
    [Google Scholar]
  2. Berg K. H., Biørnstad T. J., Straume D., Håvarstein L. S.. ( 2011;). Peptide-regulated gene depletion system developed for use in Streptococcus pneumoniae. . J Bacteriol 193:, 5207–5215. [CrossRef][PubMed]
    [Google Scholar]
  3. Berg K. H., Stamsås G. A., Straume D., Håvarstein L. S.. ( 2013;). Effects of low PBP2b levels on cell morphology and peptidoglycan composition in Streptococcus pneumoniae R6. . J Bacteriol 195:, 4342–4354. [CrossRef][PubMed]
    [Google Scholar]
  4. Bertsche U., Breukink E., Kast T., Vollmer W.. ( 2005;). In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. . J Biol Chem 280:, 38096–38101. [CrossRef][PubMed]
    [Google Scholar]
  5. Buddelmeijer N., Beckwith J.. ( 2004;). A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region. . Mol Microbiol 52:, 1315–1327. [CrossRef][PubMed]
    [Google Scholar]
  6. Fontaine L., Boutry C., de Frahan M. H., Delplace B., Fremaux C., Horvath P., Boyaval P., Hols P.. ( 2010;). A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. . J Bacteriol 192:, 1444–1454. [CrossRef][PubMed]
    [Google Scholar]
  7. Johnsborg O., Håvarstein L. S.. ( 2009;). Pneumococcal LytR, a protein from the LytR-CpsA-Psr family, is essential for normal septum formation in Streptococcus pneumoniae. . J Bacteriol 191:, 5859–5864. [CrossRef][PubMed]
    [Google Scholar]
  8. Johnsborg O., Eldholm V., Bjørnstad M. L., Håvarstein L. S.. ( 2008;). A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. . Mol Microbiol 69:, 245–253. [CrossRef][PubMed]
    [Google Scholar]
  9. Kell C. M., Sharma U. K., Dowson C. G., Town C., Balganesh T. S., Spratt B. G.. ( 1993;). Deletion analysis of the essentiality of penicillin-binding proteins 1A, 2B and 2X of Streptococcus pneumoniae. . FEMS Microbiol Lett 106:, 171–175. [CrossRef][PubMed]
    [Google Scholar]
  10. Lacks S., Hotchkiss R. D.. ( 1960;). A study of the genetic material determining an enzyme in Pneumococcus. . Biochim Biophys Acta 39:, 508–518. [CrossRef][PubMed]
    [Google Scholar]
  11. Macheboeuf P., Contreras-Martel C., Job V., Dideberg O., Dessen A.. ( 2006;). Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. . FEMS Microbiol Rev 30:, 673–691. [CrossRef][PubMed]
    [Google Scholar]
  12. Maestro B., Novaková L., Hesek D., Lee M., Leyva E., Mobashery S., Sanz J. M., Branny P.. ( 2011;). Recognition of peptidoglycan and β-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae. . FEBS Lett 585:, 357–363. [CrossRef][PubMed]
    [Google Scholar]
  13. Maggi S., Massidda O., Luzi G., Fadda D., Paolozzi L., Ghelardini P.. ( 2008;). Division protein interaction web: identification of a phylogenetically conserved common interactome between Streptococcus pneumoniae and Escherichia coli. . Microbiology 154:, 3042–3052. [CrossRef][PubMed]
    [Google Scholar]
  14. Massidda O., Nováková L., Vollmer W.. ( 2013;). From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division?. Environ Microbiol 15:, 3133–3157. [CrossRef][PubMed]
    [Google Scholar]
  15. Masson S., Kern T., Le Gouëllec A., Giustini C., Simorre J. P., Callow P., Vernet T., Gabel F., Zapun A.. ( 2009;). Central domain of DivIB caps the C-terminal regions of the FtsL/DivIC coiled-coil rod. . J Biol Chem 284:, 27687–27700. [CrossRef][PubMed]
    [Google Scholar]
  16. Maurer P., Todorova K., Sauerbier J., Hakenbeck R.. ( 2012;). Mutations in Streptococcus pneumoniae penicillin-binding protein 2x: importance of the C-terminal penicillin-binding protein and serine/threonine kinase-associated domains for beta-lactam binding. . Microb Drug Resist 18:, 314–321. [CrossRef][PubMed]
    [Google Scholar]
  17. Morlot C., Zapun A., Dideberg O., Vernet T.. ( 2003;). Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. . Mol Microbiol 50:, 845–855. [CrossRef][PubMed]
    [Google Scholar]
  18. Morlot C., Bayle L., Jacq M., Fleurie A., Tourcier G., Galisson F., Vernet T., Grangeasse C., Di Guilmi A. M.. ( 2013;). Interaction of Penicillin-Binding Protein 2x and Ser/Thr protein kinase StkP, two key players in Streptococcus pneumoniae R6 morphogenesis. . Mol Microbiol 90:, 88–102.[PubMed]
    [Google Scholar]
  19. Noirclerc-Savoye M., Le Gouëllec A., Morlot C., Dideberg O., Vernet T., Zapun A.. ( 2005;). In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae. . Mol Microbiol 55:, 413–424. [CrossRef][PubMed]
    [Google Scholar]
  20. Noirclerc-Savoye M., Lantez V., Signor L., Philippe J., Vernet T., Zapun A.. ( 2013;). Reconstitution of membrane protein complexes involved in pneumococcal septal cell wall assembly. . PLoS ONE 8:, e75522. [CrossRef][PubMed]
    [Google Scholar]
  21. Paik J., Kern I., Lurz R., Hakenbeck R.. ( 1999;). Mutational analysis of the Streptococcus pneumoniae bimodular class A penicillin-binding proteins. . J Bacteriol 181:, 3852–3856.[PubMed]
    [Google Scholar]
  22. Paracuellos P., Ballandras A., Robert X., Kahn R., Hervé M., Mengin-Lecreulx D., Cozzone A. J., Duclos B., Gouet P.. ( 2010;). The extended conformation of the 2.9-Å crystal structure of the three-PASTA domain of a Ser/Thr kinase from the human pathogen Staphylococcus aureus. . J Mol Biol 404:, 847–858. [CrossRef][PubMed]
    [Google Scholar]
  23. Peters K., Schweizer I., Beilharz K., Stahlmann C., Veening J. W., Hakenbeck R., Denapaite D.. ( 2014;). Streptococcus pneumoniae PBP2x mid-cell localization requires the C-terminal PASTA domains and is essential for cell shape maintenance. . Mol Microbiol 92:, 733–755. [CrossRef][PubMed]
    [Google Scholar]
  24. Rutschmann J., Maurer P., Hakenbeck R.. ( 2007;). Detection of penicillin-binding proteins. . In Molecular Biology of Streptococci, pp. 537–542. Edited by Hakenbeck R., Chhatwal S... Norwich:: Horizon Bioscience;.
    [Google Scholar]
  25. Sauvage E., Kerff F., Terrak M., Ayala J. A., Charlier P.. ( 2008;). The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. . FEMS Microbiol Rev 32:, 234–258. [CrossRef][PubMed]
    [Google Scholar]
  26. Sung C. K., Li H., Claverys J. P., Morrison D. A.. ( 2001;). An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. . Appl Environ Microbiol 67:, 5190–5196. [CrossRef][PubMed]
    [Google Scholar]
  27. van den Berg van Saparoea H. B., Glas M., Vernooij I. G. W. H., Bitter W., den Blaauwen T., Luirink J.. ( 2013;). Fine-mapping the contact sites of the Escherichia coli cell division proteins FtsB and FtsL on the FtsQ protein. . J Biol Chem 288:, 24340–24350. [CrossRef][PubMed]
    [Google Scholar]
  28. Vollmer W., Blanot D., de Pedro M. A.. ( 2008;). Peptidoglycan structure and architecture. . FEMS Microbiol Rev 32:, 149–167. [CrossRef][PubMed]
    [Google Scholar]
  29. Wayne K. J., Sham L. T., Tsui H. C. T., Gutu A. D., Barendt S. M., Keen S. K., Winkler M. E.. ( 2010;). Localization and cellular amounts of the WalRKJ (VicRKX) two-component regulatory system proteins in serotype 2 Streptococcus pneumoniae. . J Bacteriol 192:, 4388–4394. [CrossRef][PubMed]
    [Google Scholar]
  30. Weiss D. S., Chen J. C., Ghigo J. M., Boyd D., Beckwith J.. ( 1999;). Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. . J Bacteriol 181:, 508–520.[PubMed]
    [Google Scholar]
  31. Wissel M. C., Wendt J. L., Mitchell C. J., Weiss D. S.. ( 2005;). The transmembrane helix of the Escherichia coli division protein FtsI localizes to the septal ring. . J Bacteriol 187:, 320–328. [CrossRef][PubMed]
    [Google Scholar]
  32. Xue Y.. ( 2008;). Effects of protein domains on localization of penicillin-binding proteins 2a and 2b in Bacillus subtilis. Master’s thesis, Virginia Polytechnic Institute and State University;, USA:. http://scholar.lib.vt.edu/theses/available/etd-10012008-210035/
    [Google Scholar]
  33. Yeats C., Finn R. D., Bateman A.. ( 2002;). The PASTA domain: a β-lactam-binding domain. . Trends Biochem Sci 27:, 438–440. [CrossRef][PubMed]
    [Google Scholar]
  34. Zapun A., Vernet T., Pinho M. G.. ( 2008;). The different shapes of cocci. . FEMS Microbiol Rev 32:, 345–360. [CrossRef][PubMed]
    [Google Scholar]
  35. Zhao G., Meier T. I., Kahl S. D., Gee K. R., Blaszczak L. C.. ( 1999;). BOCILLIN FL, a sensitive and commercially available reagent for detection of penicillin-binding proteins. . Antimicrob Agents Chemother 43:, 1124–1128.[PubMed]
    [Google Scholar]
  36. Zijderveld C. A. L., Aarsman M. E. G., den Blaauwen T., Nanninga N.. ( 1991;). Penicillin-binding protein 1B of Escherichia coli exists in dimeric forms. . J Bacteriol 173:, 5740–5746.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078535-0
Loading
/content/journal/micro/10.1099/mic.0.078535-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error